cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A251670 E.g.f.: exp(10*x*G(x)^9) / G(x) where G(x) = 1 + x*G(x)^10 is the g.f. of A059968.

Original entry on oeis.org

1, 9, 242, 11824, 856824, 82986080, 10097121280, 1481787433920, 254874712419200, 50305519571800960, 11209381628379724800, 2783746998856794752000, 762476362390276346060800, 228363072063685762536960000, 74247696727054926125971251200, 26044746725090717967744412672000
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Comments

In general, sum_{k=0..n} m^k * n!/k! * binomial(m*n-k-2,n-k) * ((m-1)*k-1)/((m-1)*n-1), m>2, is asymptotic to (m-2) * m^(m*n-3/2) / (m-1)^((m-1)*n-1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

Examples

			E.g.f.: A(x) = 1 + 9*x + 242*x^2/2! + 11824*x^3/3! + 856824*x^4/4! + 82986080*x^5/5! +...
such that A(x) = exp(10*x*G(x)^9) / G(x)
where G(x) = 1 + x*G(x)^10 is the g.f. of A059958:
G(x) = 1 + x + 10*x^2 + 145*x^3 + 2470*x^4 + 46060*x^5 + 910252*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[10^k * n!/k! * Binomial[10*n-k-2,n-k] * (9*k-1)/(9*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
  • PARI
    {a(n)=local(G=1); for(i=0, n, G = 1 + x*G^10 +x*O(x^n)); n!*polcoeff(exp(10*x*G^9)/G, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 9^k * n!/k! * binomial(9*n-k-2,n-k) * (8*k-1)/(8*n-1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

Let G(x) = 1 + x*G(x)^10 be the g.f. of A059968, then the e.g.f. A(x) of this sequence satisfies:
(1) A'(x)/A(x) = G(x)^9 + 8*G'(x)/G(x).
(2) A(x) = F(x/A(x)^9) where F(x) is the e.g.f. of A251700.
(3) A(x) = Sum_{n>=0} A251700(n)*(x/A(x)^9)^n/n! where A251700(n) = (8*n+1) * (9*n+1)^(n-2) * 10^n.
(4) [x^n/n!] A(x)^(9*n+1) = (8*n+1) * (9*n+1)^(n-1) * 10^n.
a(n) = Sum_{k=0..n} 10^k * n!/k! * binomial(10*n-k-2,n-k) * (9*k-1)/(9*n-1) for n>=0.
Recurrence: 81*(3*n-2)*(3*n-1)*(9*n-8)*(9*n-7)*(9*n-5)*(9*n-4)*(9*n-2)*(9*n-1)*(100000000*n^9 - 1508750000*n^8 + 10158500000*n^7 - 40108637500*n^6 + 102477510000*n^5 - 175985889125*n^4 + 203494963150*n^3 - 153061617555*n^2 + 68057955478*n - 13624029912)*a(n) = 800*(1250000000000000*n^18 - 25734375000000000*n^17 + 248379687500000000*n^16 - 1494668125000000000*n^15 + 6291920187500000000*n^14 - 19707236445312500000*n^13 + 47696214907031250000*n^12 - 91443867836531250000*n^11 + 141240231848528125000*n^10 - 177729148289358906250*n^9 + 183386452781820390625*n^8 - 155416253373710737500*n^7 + 107706559814898413750*n^6 - 60246014246053412750*n^5 + 26474457002621149925*n^4 - 8675686414409435660*n^3 + 1905677176596950796*n^2 - 212632849946745072*n - 10904042717568)*a(n-1) + 10000000000*(100000000*n^9 - 608750000*n^8 + 1688500000*n^7 - 2844137500*n^6 + 3264185000*n^5 - 2692901625*n^4 + 1611256650*n^3 - 663025355*n^2 + 151278318*n + 4536)*a(n-2). - Vaclav Kotesovec, Dec 07 2014
a(n) ~ 8 * 10^(10*n-3/2) / 3^(18*n-1) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Dec 07 2014

A118478 a(n) is the smallest m such that m*(m+1) is divisible by the first n prime numbers.

Original entry on oeis.org

1, 2, 5, 14, 209, 714, 714, 62985, 367080, 728364, 64822394, 1306238010, 11182598504, 715041747420, 51913478860880, 454746157008780, 9314160363311804, 261062105979210899, 261062105979210899, 696537082207206753590, 54097844397380813592485, 286495021083846822067820
Offset: 1

Views

Author

Giovanni Resta, May 05 2006

Keywords

Comments

a(n)*(a(n)+1)/(product of first n primes) = 1, 1, 1, 1, 19, 17, 1, 409, 604, 82, 20951, 229931, 411012, 39080794, 4382914408, ... - Robert G. Wilson v, May 13 2006 [This is now A215021. - N. J. A. Sloane, Aug 02 2012]

Examples

			a(8) = 62985 since 62985*62986 = 2*3*5*7*11*13*17*19*409, i.e., it is divisible by the first 8 prime numbers (2,3,..,19).
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a118478 n = (+ 1) . fromJust $ elemIndex 0 $
                map (flip mod (a002110 n)) $ tail a002378_list
    -- Reinhard Zumkeller, Jun 14 2015
    (Python 3.8+)
    from itertools import combinations
    from math import prod
    from sympy import sieve, prime, primorial
    from sympy.ntheory.modular import crt
    def A118478(n): return 1 if n == 1 else int(min(min(crt((m, (k:=primorial(n))//m), (0, -1))[0], crt((k//m, m), (0, -1))[0]) for m in (prod(d) for l in range(1, n//2+1) for d in combinations(sieve.primerange(prime(n)+1), l)))) # Chai Wah Wu, May 31 2022
  • Mathematica
    f[n_] := Block[{k = 1, p = Times @@ Prime@Range@n}, While[ !IntegerQ@ Sqrt[4k*p + 1], k++ ]; Floor@ Sqrt[k*p]]; Array[f, 15] (* Robert G. Wilson v, May 13 2006 *)
  • PARI
    P=primes(25);T=1;for(n=1,25,T*=P[n];m=T;for(k=2^(n-1),2^n-1,u=binary(k); a=1;for(i=1,n,if(u[i],a*=P[i]));b=T/a;w=bezout(a,b);if(w[1]<=0,w[1]+=b); c=a*w[1]-1;m=min(m,c);w[1]=b-w[1];if(w[1]<=0,w[1]+=b);c=a*w[1];m=min(m,c)); print1(m,",")) \\ Robert Gerbicz, Aug 24 2006
    

Formula

a(n) = Min_{m | m*(m+1) is divisible by A002110(n)}.

Extensions

More terms from Robert Gerbicz, Aug 24 2006

A083002 Smallest oblong number having at least n distinct prime divisors.

Original entry on oeis.org

2, 6, 30, 210, 4290, 43890, 510510, 53501910, 1487683470, 64790866140, 530514844860, 126408523110870, 3425113062060690, 660393717163700520, 26657280574571657010, 3448055881024876471350, 308480161111936386482910
Offset: 1

Views

Author

Jason Earls, May 30 2003

Keywords

Comments

a(18) <= 32521466098360753728404190. - Donovan Johnson, Oct 05 2011
Oblong numbers are those of the form n(n+1) = A002378(n) = 2*A000217(n).

Examples

			a(4)= 210 = 2*3*5*7.
		

Crossrefs

Programs

  • PARI
    {odf(m) = print1(0","); for(n=1,m, k=1; while(omega(k*(k+1))!=n,k++); print1(k*(k+1)",")) }

Extensions

More terms from Don Reble, Jun 03 2003
a(15)-a(16) from Donovan Johnson, Apr 26 2009
a(17) from Donovan Johnson, Sep 15 2010

A069354 Lowest base with simple divisibility test for n primes; smallest B such that omega(B) + omega(B-1) = n.

Original entry on oeis.org

2, 3, 6, 15, 66, 210, 715, 7315, 38571, 254541, 728365, 11243155, 58524466, 812646121, 5163068911, 58720148851, 555409903686, 4339149420606, 69322940121436, 490005293940085, 5819629108725510, 76622240600506315
Offset: 1

Views

Author

Robert Munafo, Nov 19 2002

Keywords

Comments

Indices of record values of primepi(n) - A181834(n) (the number of primes <= n which are not strongly prime to n). - Peter Luschny, Mar 17 2013
As pointed out by Don Reble on the SeqFan list, one has a(n) = A059958(n)+1 at least up to a(18), since so far A001221(m*(m+1)) = n (and not ">") for m = A059958(n). - M. F. Hasler, Jan 15 2014
10^13 < a(19) <= 69322940121436. - Giovanni Resta, Mar 24 2020

Examples

			a(4) = 15 because in base 15 you can test for divisibility by 4 different primes (3 and 5 directly, 2 and 7 by "casting out 14's")
		

Crossrefs

Programs

  • Maple
    A069354_list := proc(n) local i, L, Max; Max := 1; L := NULL;
    for i from 2 to n do
       if nops(numtheory[factorset](i*(i-1))) = Max
       then Max := Max + 1; L := L,i fi;
    od;
    L end:  # Peter Luschny, Nov 12 2010

Formula

a(n) = A059958(n) + 1 for 0 < n < 19. - Robert G. Wilson v, Feb 18 2014

Extensions

More terms added using data from A059958 (see there for credits) by M. F. Hasler, Jan 15 2014
a(19)-a(21) from Michael S. Branicky, Feb 11 2023
a(22) from Michael S. Branicky, Feb 23 2023

A363847 Numbers k such that Omega(m*(m+1)) < Omega(k*(k+1)) for all m < k, where Omega(k) is the number of prime divisors of k counted with multiplicity (A001222).

Original entry on oeis.org

1, 2, 3, 7, 8, 15, 32, 63, 224, 255, 512, 3968, 4095, 14336, 32768, 65535, 180224, 262143, 1048575, 14680064, 16777215, 134217728, 268435455, 1073741823, 8589934592, 12884901887, 34359738368, 68719476735, 1099511627775, 4398046511103, 17592186044415, 35184372088832
Offset: 1

Views

Author

Amiram Eldar, Jun 24 2023

Keywords

Comments

Terms a(2)-a(18) were found by Erdős and Nicolas (1978-1979).
Equivalently, numbers k such that Omega(m) + Omega(m+1) < Omega(k) + Omega(k+1), for all m < k.
The corresponding record values are 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 20, 22, 24, 26, 27, 31, 33, 34, 37, 38, 39, 40, 46, 48, 50, 51, 52, ... .

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{o1 = 0, o2, om = 0, s = {}}, Do[o2 = PrimeOmega[k]; o = o1 + o2; If[o > om, om = o; AppendTo[s, k - 1]]; o1 = o2, {k, 2, kmax}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(o1 = 0, o2, om = 0); for(k = 2, kmax, o2 = bigomega(k); o = o1 + o2; if(o > om, om = o; print1(k-1, ", ")); o1 = o2); }

Extensions

a(29)-a(32) from Martin Ehrenstein, Jul 08 2023
Showing 1-5 of 5 results.