A059966 a(n) = (1/n) * Sum_{ d divides n } mu(n/d) * (2^d - 1).
1, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806
Offset: 1
Examples
a(4)=3: the 3 elements [a,c], [a[a,b]] and d form a basis of all homogeneous elements of degree 4 in the free Lie algebra with generators a of degree 1, b of degree 2, c of degree 3 and d of degree 4. From _Gus Wiseman_, Dec 19 2017: (Start) The sequence of Lyndon compositions organized by sum begins: (1), (2), (3),(12), (4),(13),(112), (5),(14),(23),(113),(122),(1112), (6),(15),(24),(114),(132),(123),(1113),(1122),(11112), (7),(16),(25),(115),(34),(142),(124),(1114),(133),(223),(1213),(1132),(1123),(11113),(1222),(11212),(11122),(111112). (End)
References
- C. Reutenauer, Free Lie algebras, Clarendon press, Oxford (1993).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Nicolas Andrews, Lucas Gagnon, Félix Gélinas, Eric Schlums, and Mike Zabrocki, When are Hopf algebras determined by integer sequences?, arXiv:2505.06941 [math.CO], 2025. See p. 17.
- S. V. Duzhin and D. V. Pasechnik, Groups acting on necklaces and sandpile groups, Journal of Mathematical Sciences, August 2014, Volume 200, Issue 6, pp 690-697. See page 85. - N. J. A. Sloane, Jun 30 2014
- Seok-Jin Kang and Myung-Hwan Kim, Free Lie Algebras, Generalized Witt Formula and the Denominator Identity, Journal of Algebra 183, 560-594 (1996).
- Michael J. Mossinghoff and Timothy S. Trudgian, A tale of two omegas, arXiv:1906.02847 [math.NT], 2019.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- Jakob Oesinghaus, Quasi-symmetric functions and the Chow ring of the stack of expanded pairs, arXiv:1806.10700 [math.AG], 2018.
- Robert Schneider, Andrew V. Sills, and Hunter Waldron, On the q-factorization of power series, arXiv:2501.18744 [math.CO], 2025. See p. 6.
Crossrefs
Programs
-
Haskell
a059966 n = sum (map (\x -> a008683 (n `div` x) * a000225 x) [d | d <- [1..n], mod n d == 0]) `div` n -- Reinhard Zumkeller, Nov 18 2011
-
Mathematica
Table[1/n Apply[Plus, Map[(MoebiusMu[n/# ](2^# - 1)) &, Divisors[n]]], {n, 20}] (* Second program: *) Table[(1/n) DivisorSum[n, MoebiusMu[n/#] (2^# - 1) &], {n, 35}] (* Michael De Vlieger, Jul 22 2019 *)
-
Python
from sympy import mobius, divisors def A059966(n): return sum(mobius(n//d)*(2**d-1) for d in divisors(n,generator=True))//n # Chai Wah Wu, Feb 03 2022
Formula
G.f.: Product_{n>0} (1-q^n)^a(n) = 1-q-q^2-q^3-q^4-... = 2-1/(1-q).
Inverse Euler transform of A011782. - Alois P. Heinz, Jun 23 2018
G.f.: Sum_{k>=1} mu(k)*log((1 - x^k)/(1 - 2*x^k))/k. - Ilya Gutkovskiy, May 19 2019
a(n) ~ 2^n / n. - Vaclav Kotesovec, Aug 10 2019
Dirichlet g.f.: f(s+1)/zeta(s+1) - 1, where f(s) = Sum_{n>=1} 2^n/n^s. - Jianing Song, Nov 13 2021
Extensions
Explicit formula from Paul D. Hanna, Apr 15 2002
Description corrected by Axel Kleinschmidt, Sep 15 2002
Comments