cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059986 Number of rods required to make a 3-D cube of side length n.

Original entry on oeis.org

0, 12, 54, 144, 300, 540, 882, 1344, 1944, 2700, 3630, 4752, 6084, 7644, 9450, 11520, 13872, 16524, 19494, 22800, 26460, 30492, 34914, 39744, 45000, 50700, 56862, 63504, 70644, 78300, 86490, 95232, 104544, 114444, 124950, 136080, 147852, 160284, 173394
Offset: 0

Views

Author

Laura Twomey (sxe15(AT)hotmail.com), Mar 07 2001

Keywords

Comments

Equals number of rods making a cube of side length n+1 minus the number of line segments illustrating the isometric projection of a cube of side length n+1 (i.e., the hexagonal matchstick numbers). See the illustration in the links and formula below. - Peter M. Chema, Mar 14 2017
a(n) is also the edge count and intersection number of the (n+1) X (n+1) X (n+1) grid graph. - Eric W. Weisstein, Mar 09 2024

Examples

			A 1 X 1 X 1 cube requires 12 rods.
		

Crossrefs

Programs

Formula

a(n) = 3*n*(n+1)^2. - Neven Juric (neven.juric(AT)apis-it.hr), Sep 28 2005
From Geoffrey Critzer, May 17 2009: (Start)
a(n) = a(n-1) + 9*n^2 + 3*n.
O.g.f.: 6*x*(2 + x)/(1 - x)^4.
E.g.f.: 3*x*exp(x)*(x^2 + 5*x + 4). (End)
a(n) = A117227(n^3). - Michel Marcus, Jun 19 2013
For n > 0, a(n) = Sum_{k=1..n} 2*(n+1)(k+n+1), which is the sum of all perimeters of Pythagorean triangles with arms 2*k*(n+1) and (n+1)^2 - k^2 with hypotenuse k^2 + (n+1)^2. - J. M. Bergot, May 12 2014
a(n) = a(n+1) - A045945(n+1). - Peter M. Chema, Mar 14 2017
a(n) = (n-1)*t(n+1) + n*(t(n)+t(n+1)) + (n+1)*(t(n-1)+t(n)+t(n+1)), where t = A000217. - J. M. Bergot, May 30 2017
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 2/3 - Pi^2/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = -2/3 + Pi^2/36 + 2*log(2)/3. (End)

Extensions

More terms from Neven Juric (neven.juric(AT)apis-it.hr), Sep 28 2005