A059986 Number of rods required to make a 3-D cube of side length n.
0, 12, 54, 144, 300, 540, 882, 1344, 1944, 2700, 3630, 4752, 6084, 7644, 9450, 11520, 13872, 16524, 19494, 22800, 26460, 30492, 34914, 39744, 45000, 50700, 56862, 63504, 70644, 78300, 86490, 95232, 104544, 114444, 124950, 136080, 147852, 160284, 173394
Offset: 0
Examples
A 1 X 1 X 1 cube requires 12 rods.
Links
- Peter M. Chema, First difference are the hexagonal matchstick numbers or isometric projection of a cube.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, Grid Graph.
- Eric Weisstein's World of Mathematics, Intersection Number.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[3*n*(n+1)^2: n in [0..50]]; // Wesley Ivan Hurt, May 13 2014
-
Maple
A059986:=n->3*n*(n+1)^2; seq(A059986(n), n=0..50); # Wesley Ivan Hurt, May 13 2014
-
Mathematica
Table[EdgeCount[GridGraph[{n, n, n}]], {n, 39}] (* Geoffrey Critzer, May 17 2009 *) Table[3 n (n + 1)^2, {n, 0, 50}] (* Wesley Ivan Hurt, May 13 2014 *) LinearRecurrence[{4, -6, 4, -1}, {0, 12, 54, 144}, 20] (* Eric W. Weisstein, Mar 09 2024 *) CoefficientList[Series[6 x (2 + x)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Mar 09 2024 *)
-
PARI
a(n) = 3*n*(n+1)^2 \\ Charles R Greathouse IV, May 14 2014
Formula
a(n) = 3*n*(n+1)^2. - Neven Juric (neven.juric(AT)apis-it.hr), Sep 28 2005
From Geoffrey Critzer, May 17 2009: (Start)
a(n) = a(n-1) + 9*n^2 + 3*n.
O.g.f.: 6*x*(2 + x)/(1 - x)^4.
E.g.f.: 3*x*exp(x)*(x^2 + 5*x + 4). (End)
a(n) = A117227(n^3). - Michel Marcus, Jun 19 2013
For n > 0, a(n) = Sum_{k=1..n} 2*(n+1)(k+n+1), which is the sum of all perimeters of Pythagorean triangles with arms 2*k*(n+1) and (n+1)^2 - k^2 with hypotenuse k^2 + (n+1)^2. - J. M. Bergot, May 12 2014
a(n) = a(n+1) - A045945(n+1). - Peter M. Chema, Mar 14 2017
a(n) = (n-1)*t(n+1) + n*(t(n)+t(n+1)) + (n+1)*(t(n-1)+t(n)+t(n+1)), where t = A000217. - J. M. Bergot, May 30 2017
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=1} 1/a(n) = 2/3 - Pi^2/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = -2/3 + Pi^2/36 + 2*log(2)/3. (End)
Extensions
More terms from Neven Juric (neven.juric(AT)apis-it.hr), Sep 28 2005
Comments