A060143 a(n) = floor(n/tau), where tau = (1 + sqrt(5))/2.
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45
Offset: 0
Examples
a(6)= 3 so b(6) = 6 - 3 = 3. a(7) = 4 because (a(6) + 1) / b(6) = 4/3 which is < (1 + sqrt(5))/2. So b(7) = 7 - 4 = 3. a(8) = 4 because (a(7) + 1) / b(7) = 5/3 which is > (1 + sqrt(5))/2. - Robert A. Stump (bee_ess107(AT)msn.com), Sep 22 2002 From _Wolfdieter Lang_, Jun 28 2011: (Start) There are a(4) = 2 (positive) Wythoff A-numbers <= 3, namely 1 and 3. There are a(4) = 2 (positive) Wythoff B-numbers < A(4) = 6, namely 2 and 5. a(4) = 2 = A(4) - 4 = 6 - 4. (End)
Links
- William A. Tedeschi, Table of n, a(n) for n = 0..10000 [This replaces an earlier b-file computed by Harry J. Smith]
- M. Celaya and F. Ruskey (Proposers), Another property of only the golden ratio, Problem 11651, Amer. Math. Monthly, 121 (2014), 550-551.
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- Vincent Granville and Jean-Paul Rasson, A strange recursive relation, J. Number Theory 30 (1988), no. 2, 238--241. MR0961919(89j:11014). - From _N. J. A. Sloane_, Jun 13 2014
- Jeffrey Shallit, The Hurt-Sada Array and Zeckendorf Representations, arXiv:2501.08823 [math.NT], 2025. See p. 2.
Crossrefs
Programs
-
Magma
[Floor(2*n/(1+Sqrt(5))): n in [0..80]]; // Vincenzo Librandi, Mar 29 2015
-
Mathematica
Floor[Range[0,80]/GoldenRatio] (* Harvey P. Dale, May 09 2013 *)
-
PARI
{ default(realprecision, 10); p=(sqrt(5) - 1)/2; for (n=0, 1000, write("b060143.txt", n, " ", floor(n*p)); ) } \\ Harry J. Smith, Jul 02 2009
-
Python
from math import isqrt def A060143(n): return (n+isqrt(5*n**2)>>1)-n # Chai Wah Wu, Aug 10 2022
Formula
a(n) = floor(phi(n)), where phi=(sqrt(5)-1)/2. [corrected by Casey Mongoven, Jul 18 2008]
a(F_n + 1) = F_{n-1} if F_n is the n-th Fibonacci number. [aligned with sequence offset by Peter Munn, Jan 10 2018]
a(1) = 0. b(n) = n - a(n). If (a(n) + 1) / b(n) < (1 + sqrt(5))/2, then a(n+1) = a(n) + 1, else a(n+1) = a(n). - Robert A. Stump (bee_ess107(AT)msn.com), Sep 22 2002 [corrected by Peter Munn, Jan 07 2018]
a(n) = floor(n*phi) - n, where phi = (1+sqrt(5))/2. - William A. Tedeschi, Mar 06 2008
Celaya and Ruskey give an interesting formula for a(n). - N. J. A. Sloane, Jun 13 2014
Extensions
I merged three identical sequences to create this entry. Some of the formulas may need their initial terms adjusting now. - N. J. A. Sloane, Mar 05 2003
More terms from William A. Tedeschi, Mar 06 2008
Comments