cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060143 a(n) = floor(n/tau), where tau = (1 + sqrt(5))/2.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2001

Keywords

Comments

Fibonacci base shift right: for n >= 0, a(n+1) = Sum_{k in A_n} F_{k-1}, where n = Sum_{k in A_n} F_k (unique) expression of n as a sum of "noncontiguous" Fibonacci numbers (with index >=2). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001 [corrected, and aligned with sequence offset by Peter Munn, Jan 10 2018]
Numerators a(n) of fractions slowly converging to phi, the golden ratio: let a(1) = 0, b(n) = n - a(n); if (a(n) + 1) / b(n) < (1 + sqrt(5))/2, then a(n+1) = a(n) + 1, else a(n+1) = a(n). a(n) + b(n) = n and as n -> +infinity, a(n) / b(n) converges to (1 + sqrt(5))/2. For all n, a(n) / b(n) < (1 + sqrt(5))/2. - Robert A. Stump (bee_ess107(AT)msn.com), Sep 22 2002
a(10^n) gives the first few digits of phi=(sqrt(5)-1)/2.
Comment corrected, two alternative ways, by Peter Munn, Jan 10 2018: (Start)
(a(n) = a(n+1) or a(n) = a(n-1)) if and only if a(n) is in A066096.
a(n+1) = a(n+2) if and only if n is in A003622.
(End)
From Wolfdieter Lang, Jun 28 2011: (Start)
a(n+1) counts for n >= 1 the number of Wythoff A-numbers not exceeding n.
a(n+1) counts also the number of Wythoff B-numbers smaller than A(n+2), with the Wythoff A- and B-sequences A000201 and A001950, respectively.
a(n+1) = Sum_{j=1..n} A005614(j-1) for n >= 1 (no rounding problems like in the above definition, because the rabbit sequence A005614(n-1) for n >= 1, can be defined by a substitution rule).
a(n+1) = A(n+1)-(n+1) (serving, together with the last equation, as definition for A(n+1), given the rabbit sequence).
a(n+1) = A005206(n), n >= 0.
(End)
Let b(n) = floor((n+1)/phi). Then b(n) + b(b(n-1)) = n [Granville and Rasson]. - N. J. A. Sloane, Jun 13 2014

Examples

			a(6)= 3 so b(6) = 6 - 3 = 3. a(7) = 4 because (a(6) + 1) / b(6) = 4/3 which is < (1 + sqrt(5))/2. So b(7) = 7 - 4 = 3. a(8) = 4 because (a(7) + 1) / b(7) = 5/3 which is > (1 + sqrt(5))/2. - Robert A. Stump (bee_ess107(AT)msn.com), Sep 22 2002
From _Wolfdieter Lang_, Jun 28 2011: (Start)
There are a(4) = 2 (positive) Wythoff A-numbers <= 3, namely 1 and 3.
There are a(4) = 2 (positive) Wythoff B-numbers < A(4) = 6, namely 2 and 5.
a(4) = 2 = A(4) - 4 = 6 - 4.
(End)
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A003622, A022342, A035336.
Terms that occur only once: A001950.
Terms that occur twice: A066096 (a version of A000201).
Numerator sequences for other values, as described in Robert A. Stump's 2002 comment: A074065 (sqrt(3)), A074840 (sqrt(2)).
Apart from initial terms, same as A005206.
First differences: A096270 (a version of A005614).
Partial sums: A183136.

Programs

  • Magma
    [Floor(2*n/(1+Sqrt(5))): n in [0..80]]; // Vincenzo Librandi, Mar 29 2015
    
  • Mathematica
    Floor[Range[0,80]/GoldenRatio] (* Harvey P. Dale, May 09 2013 *)
  • PARI
    { default(realprecision, 10); p=(sqrt(5) - 1)/2; for (n=0, 1000, write("b060143.txt", n, " ", floor(n*p)); ) } \\ Harry J. Smith, Jul 02 2009
    
  • Python
    from math import isqrt
    def A060143(n): return (n+isqrt(5*n**2)>>1)-n # Chai Wah Wu, Aug 10 2022

Formula

a(n) = floor(phi(n)), where phi=(sqrt(5)-1)/2. [corrected by Casey Mongoven, Jul 18 2008]
a(F_n + 1) = F_{n-1} if F_n is the n-th Fibonacci number. [aligned with sequence offset by Peter Munn, Jan 10 2018]
a(1) = 0. b(n) = n - a(n). If (a(n) + 1) / b(n) < (1 + sqrt(5))/2, then a(n+1) = a(n) + 1, else a(n+1) = a(n). - Robert A. Stump (bee_ess107(AT)msn.com), Sep 22 2002 [corrected by Peter Munn, Jan 07 2018]
A006336(n) = A006336(n-1) + A006336(a(n)) for n>1. - Reinhard Zumkeller, Oct 24 2007
a(n) = floor(n*phi) - n, where phi = (1+sqrt(5))/2. - William A. Tedeschi, Mar 06 2008
Celaya and Ruskey give an interesting formula for a(n). - N. J. A. Sloane, Jun 13 2014

Extensions

I merged three identical sequences to create this entry. Some of the formulas may need their initial terms adjusting now. - N. J. A. Sloane, Mar 05 2003
More terms from William A. Tedeschi, Mar 06 2008