A060165 Number of orbits of length n under the map whose periodic points are counted by A000984.
2, 2, 6, 16, 50, 150, 490, 1600, 5400, 18450, 64130, 225264, 800046, 2865226, 10341150, 37566720, 137270954, 504171432, 1860277042, 6892317200, 25631327190, 95640829922, 357975249026, 1343650040256, 5056424257500, 19073789328750, 72108867614796
Offset: 1
Examples
a(5) = 50 because if a map has A000984 as its periodic points, then it would have 2 fixed points and 252 points of period 5, hence 50 orbits of length 5.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1669
- R. Ehrenborg, S. Kitaev and E. Steingrimsson, Number of cycles in the graph of 312-avoiding permutations, arXiv:1310.1520 [math.CO], 2013.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> add(mobius(n/d)*binomial(2*d, d), d=divisors(n))/n: seq(a(n), n=1..30); # Alois P. Heinz, Dec 10 2013
-
Mathematica
a[n_] := (1/n)*Sum[MoebiusMu[d]*Binomial[2*n/d, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jul 16 2015 *)
-
PARI
a(n)=sumdiv(n,d,moebius(n/d)*binomial(2*d,d))/n \\ Charles R Greathouse IV, Dec 10 2013
-
Python
from sympy import mobius, binomial, divisors def a(n): return sum(mobius(n//d) * binomial(2*d, d) for d in divisors(n))//n print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Jul 24 2017
Formula
a(n) = 2*A022553(n).
a(n) = A007727(n)/n. - R. J. Mathar, Jul 24 2017
G.f.: 2 * Sum_{k>=1} mu(k)*log((1 - sqrt(1 - 4*x^k))/(2*x^k))/k. - Ilya Gutkovskiy, May 18 2019
a(n) ~ 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 04 2022
Comments