cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060165 Number of orbits of length n under the map whose periodic points are counted by A000984.

Original entry on oeis.org

2, 2, 6, 16, 50, 150, 490, 1600, 5400, 18450, 64130, 225264, 800046, 2865226, 10341150, 37566720, 137270954, 504171432, 1860277042, 6892317200, 25631327190, 95640829922, 357975249026, 1343650040256, 5056424257500, 19073789328750, 72108867614796
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A000984 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.
The number of n-cycles in the graph of overlapping m-permutations where n <= m. - Richard Ehrenborg, Dec 10 2013
a(n) is divisible by n (cf. A268619), 6*a(n) is divisible by n^2 (cf. A268592). - Max Alekseyev, Feb 09 2016
Apparently the number of Lyndon words of length n with a 4-letter alphabet (see A027377) where the first letter of the alphabet appears with the same frequency as the second of the alphabet. E.g a(1)=2 counts the words (2), (3), a(2)= 2 counts (01) (23), a(3)=6 counts (021) (031) (012) (013) (223) (233). R. J. Mathar, Nov 04 2021

Examples

			a(5) = 50 because if a map has A000984 as its periodic points, then it would have 2 fixed points and 252 points of period 5, hence 50 orbits of length 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*binomial(2*d, d), d=divisors(n))/n:
    seq(a(n), n=1..30); # Alois P. Heinz, Dec 10 2013
  • Mathematica
    a[n_] := (1/n)*Sum[MoebiusMu[d]*Binomial[2*n/d, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jul 16 2015 *)
  • PARI
    a(n)=sumdiv(n,d,moebius(n/d)*binomial(2*d,d))/n \\ Charles R Greathouse IV, Dec 10 2013
    
  • Python
    from sympy import mobius, binomial, divisors
    def a(n): return sum(mobius(n//d) * binomial(2*d, d) for d in divisors(n))//n
    print([a(n) for n in range(1, 31)])  # Indranil Ghosh, Jul 24 2017

Formula

a(n) = (1/n) * Sum_{d|n} mu(d) A000984(n/d) with mu = A008683.
a(n) = 2*A022553(n).
a(n) = A007727(n)/n. - R. J. Mathar, Jul 24 2017
G.f.: 2 * Sum_{k>=1} mu(k)*log((1 - sqrt(1 - 4*x^k))/(2*x^k))/k. - Ilya Gutkovskiy, May 18 2019
a(n) ~ 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 04 2022