cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060196 Decimal expansion of 1 + 1/(1*3) + 1/(1*3*5) + 1/(1*3*5*7) + ...

Original entry on oeis.org

1, 4, 1, 0, 6, 8, 6, 1, 3, 4, 6, 4, 2, 4, 4, 7, 9, 9, 7, 6, 9, 0, 8, 2, 4, 7, 1, 1, 4, 1, 9, 1, 1, 5, 0, 4, 1, 3, 2, 3, 4, 7, 8, 6, 2, 5, 6, 2, 5, 1, 9, 2, 1, 9, 7, 7, 2, 4, 6, 3, 9, 4, 6, 8, 1, 6, 4, 7, 8, 1, 7, 9, 8, 4, 9, 0, 3, 9, 7, 9, 2, 7, 1, 1, 5, 4, 0, 9, 2, 2, 4, 7, 7, 8, 6, 1, 1, 6, 4, 0, 1, 4, 7, 2, 8, 9, 7
Offset: 1

Views

Author

Evan Michael Adams (evan(AT)tampabay.rr.com), Simon Plouffe, Mar 21 2001

Keywords

Examples

			1.410686134642447997690824711419115041323478...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.2, p. 423.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sqrt[E*Pi/2] * Erf[1/Sqrt[2]], 10, 107] // First
    (* or *) 1/Fold[Function[2*#2-1+(-1)^#2*#2/#1], 1, Reverse[Range[100]]] // N[#, 107]& // RealDigits // First (* Jean-François Alcover, Mar 07 2013, updated Sep 19 2014 *)
  • PARI
    { default(realprecision, 20080); x=2^(-1/2)*exp(1/2)*sqrt(Pi)*(1 - erfc(1/sqrt(2))); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060196.txt", n, " ", d)); } \\ Harry J. Smith, Jul 02 2009

Formula

c = sqrt(e*Pi/2)*erf(1/sqrt(2)), or 2^(-1/2)*exp(1/2)*sqrt(Pi)*(1 - erfc(1/sqrt(2))). - Michael Kleber, Mar 21 2001
From Peter Bala, Feb 09 2024: (Start)
Generalized continued fraction expansion:
c = 1/(1 - 1/(4 - 3/(6 - 5/(8 - 7/(10 - 9/(12 - ... )))))). See A286286.
c/(1 + c) = Sum_{n >= 0} (2*n-1)!!/(A112293(n) * A112293(n+1)) = 1/(1*2) + 1/(2*7) + 3/(7*36) + 15/(36*253) + 105/(253*2278) + ... = 0.5851803411..., a rapidly converging series. (End)
Equals Sum_{n >= 0} ((n - 1)*(n + 1)!*2^(n + 1))/(2*n)!. - Antonio Graciá Llorente, Feb 13 2024

Extensions

More terms from Vladeta Jovovic, Mar 27 2001