cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A286286 a(0) = 0; thereafter, a(n) = (2*n-1)*a(n-1) + 1.

Original entry on oeis.org

0, 1, 4, 21, 148, 1333, 14664, 190633, 2859496, 48611433, 923617228, 19395961789, 446107121148, 11152678028701, 301122306774928, 8732546896472913, 270708953790660304, 8933395475091790033, 312668841628212651156, 11568747140243868092773
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2017

Keywords

Crossrefs

Conjectured to give indices of records in A132424.
Cf. A001147, A002627 (similar sequence), A000522, A060196.

Programs

  • Mathematica
    NestList[{(2 #2 - 1) #1 + 1, #2 + 1} & @@ # &, {0, 1}, 19][[All, 1]] (* Michael De Vlieger, Dec 10 2021 *)

Formula

a(n) = (2*n-1)!! * Sum_{k=1..n} 1/(2*k-1)!!. - Seiichi Manyama, Sep 02 2017
a(n) = floor((2*n-1)!!*A060196), for n > 0. - Peter McNair, Dec 10 2021
From Peter Bala, Feb 09 2024: (Start)
a(n) = 2*n*a(n-1) - (2*n - 3)*a(n-2) with a(0) = 0 and a(1) = 1.
The double factorial numbers (2*n-1)!! = A001147(n) satisfy the same recurrence, leading to the generalized continued fraction expansion Limit_{n -> oo} a(n)/(2*n-1)!! = Sum_{k >= 1} 1/(2*k-1)!! = A060196 = 1/(1 - 1/(4 - 3/(6 - 5/(8 - 7/(10 - 9/(12 - ... )))))). (End)

A108088 Decimal expansion of 1/(1+1/(1+2/(1+3/(1+4/(1+5/(1+...)))))).

Original entry on oeis.org

6, 5, 5, 6, 7, 9, 5, 4, 2, 4, 1, 8, 7, 9, 8, 4, 7, 1, 5, 4, 3, 8, 7, 1, 2, 3, 0, 7, 3, 0, 8, 1, 1, 2, 8, 3, 3, 9, 9, 2, 8, 2, 3, 3, 2, 8, 7, 0, 4, 6, 2, 0, 2, 8, 0, 5, 3, 6, 8, 6, 1, 5, 8, 7, 3, 4, 1, 9, 7, 1, 6, 5, 7, 6, 6, 3, 1, 0, 5, 8, 9, 0, 6, 5, 8, 5, 0, 9, 5
Offset: 0

Views

Author

Philippe Deléham, Jun 21 2005

Keywords

Comments

Term of Ramanujan's formula (see A059444 and A060196).

Examples

			0.6556795424187984715438712307308112833992823328704...
		

References

  • S. R. Finch, "Mathematical Constants", Cambridge, pp. 423-428.

Crossrefs

Cf. A111129.

Programs

  • Mathematica
    RealDigits[Sqrt[Pi*E/2]*Erfc[1/Sqrt[2]], 10, 111][[1]]
  • PARI
    sqrt(Pi*exp(1)/2)*erfc(1/sqrt(2)) \\ G. C. Greubel, Feb 03 2017

Formula

Equals sqrt(Pi*e/2)*erfc(1/sqrt(2)), where erfc is the complementary error function. - Daniel Forgues, Apr 14 2011
Also equals Integral_{-infinity..infinity} (1/sqrt(2*Pi))*exp(-x^2/2)/(1+x^2) dx, where the integrand is normal PDF times Cauchy PDF. - Jean-François Alcover, Apr 28 2015

A112293 Row sums of number triangle A112292.

Original entry on oeis.org

1, 2, 7, 36, 253, 2278, 25059, 325768, 4886521, 83070858, 1578346303, 33145272364, 762341264373, 19058531609326, 514580353451803, 14922830250102288, 462607737753170929, 15266055345854640658, 534311937104912423031
Offset: 0

Views

Author

Paul Barry, Sep 01 2005

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := If[k <= n, (2 n - 1)!! / (2 k - 1)!!, 0];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jun 13 2019 *)

Formula

a(n) = Sum_{k=0..n} (2n-1)!!/(2k-1)!!.
a(n) = Sum_{k=0..n} 2^(n-k)(n-1/2)!/(k-1/2)!.
a(n) = Sum_{k=0..n} n!C(2n, n)2^(k-n)/(k!C(2k, k)).
a(n) = Sum_{k=0..n} (n+1)!*C(n)2^(k-n)/((k+1)!*C(k)).
Conjecture: a(n) - 2*n*a(n-1) + (2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 28 2014
a(n) = floor((2*n-1)!! * C) for n>0, where C = 1 + sqrt(e*Pi/2)*erf(1/sqrt(2)). - Don Knuth, Mar 25 2018
a(n) = 2^n*(C*Gamma(n + 1/2) + Gamma(n + 1/2, 1/2))*sqrt(e/2) for n >= 0, where C = sqrt(2/(e*Pi)) - erfc(1/sqrt(2)). - Peter Luschny, Mar 25 2018
a(n) = a(n-1) * (2*n-1) + 1 for n > 0 and a(0) = 1; that proves the conjecture of R. J. Mathar from Nov 28 2014; G.f. A(x) satisfies the equation: A(x) = 1/(1-x)^2 + A'(x) * 2*x^2/(1-x), where A' is the first derivative of A. - Werner Schulte, Oct 18 2023

A059444 Decimal expansion of square root of (Pi * e / 2).

Original entry on oeis.org

2, 0, 6, 6, 3, 6, 5, 6, 7, 7, 0, 6, 1, 2, 4, 6, 4, 6, 9, 2, 3, 4, 6, 9, 5, 9, 4, 2, 1, 4, 9, 9, 2, 6, 3, 2, 4, 7, 2, 2, 7, 6, 0, 9, 5, 8, 4, 9, 5, 6, 5, 4, 2, 2, 5, 7, 7, 8, 3, 2, 5, 6, 2, 6, 8, 9, 8, 9, 7, 8, 9, 6, 4, 2, 5, 6, 7, 0, 8, 5, 1, 6, 1, 8, 1, 2, 6, 0, 1, 8, 1, 2, 2, 7, 7, 3, 3, 1, 4, 1
Offset: 1

Views

Author

Robert G. Wilson v, Feb 01 2001

Keywords

Comments

Appears as constant factor in Proposition 1.12, p. 5, of Feige et al. (2007). - Jonathan Vos Post, Jun 18 2007

Examples

			2.066365677...
		

References

  • C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, Oxford and NY, 2001, page 68.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[ \[Pi]*\[ExponentialE]/2], 100]][[1]]
    RealDigits[Sqrt[(Pi*E)/2],10,120][[1]] (* Harvey P. Dale, Nov 27 2024 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(Pi*exp(1)/2); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b059444.txt", n, " ", d)); } \\ Harry J. Smith, Jun 27 2009

Formula

Sqrt(Pi*e/2) = A + B with A = 1 + 1/(1*3) + 1/(1*3*5) + 1/(1*3*5*7) + 1/(1*3*5*7*9) + ... = 1.410686134... (see A060196) and B = 1/(1 + 1/(1 + 2/(1 + 3/(1 + 4/(1 + 5/(1 + ...)))))) = 0.65567954241... (see A108088) - (S. Ramanujan)
Equals (sqrt(2)*exp(1/4)*(sum(n>=0, n!/(2*n)! ) - 1))/erf(1/2). - Jean-François Alcover, Mar 22 2013

Extensions

Edited by Daniel Forgues, Apr 14 2011

A289381 a(n) = numerator of Sum_{k=1..n} 1/(2*k-1)!!.

Original entry on oeis.org

1, 4, 7, 148, 1333, 4888, 190633, 2859496, 1246447, 923617228, 19395961789, 11438644132, 1013879820791, 301122306774928, 171226409734763, 270708953790660304, 525493851475987649, 104222947209404217052, 11568747140243868092773, 451181138469510855618148
Offset: 1

Views

Author

Seiichi Manyama, Sep 02 2017

Keywords

Examples

			1, 4/3, 7/5, 148/105, 1333/945, 4888/3465, 190633/135135, 2859496/2027025, 1246447/883575, 923617228/654729075, 19395961789/13749310575, 11438644132/8108567775, ... = a(n)/A289488(n) -> A060196.
		

Crossrefs

Formula

Numerators of coefficients in expansion of sqrt(Pi*x*exp(x)/2) * erf(sqrt(x/2)) / (1 - x). - Ilya Gutkovskiy, May 24 2022

A289488 a(n) = denominator of Sum_{k=1..n} 1/(2*k-1)!!.

Original entry on oeis.org

1, 3, 5, 105, 945, 3465, 135135, 2027025, 883575, 654729075, 13749310575, 8108567775, 718713961875, 213458046676875, 121378104973125, 191898783962510625, 372509404162520625, 73881031825566590625, 8200794532637891559375, 319830986772877770815625
Offset: 1

Views

Author

Seiichi Manyama, Sep 02 2017

Keywords

Examples

			1, 4/3, 7/5, 148/105, 1333/945, 4888/3465, 190633/135135, 2859496/2027025, 1246447/883575, 923617228/654729075, 19395961789/13749310575, 11438644132/8108567775, ... = A289381(n)/a(n) -> A060196.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[1/(2k-1)!!,{k,20}]]//Denominator (* Harvey P. Dale, Mar 01 2023 *)

Formula

Denominators of coefficients in expansion of sqrt(Pi*x*exp(x)/2) * erf(sqrt(x/2)) / (1 - x). - Ilya Gutkovskiy, May 24 2022

A306858 Decimal expansion of 1 - 1/(1*3) + 1/(1*3*5) - 1/(1*3*5*7) + ...

Original entry on oeis.org

7, 2, 4, 7, 7, 8, 4, 5, 9, 0, 0, 7, 0, 7, 6, 3, 3, 1, 8, 1, 8, 2, 2, 7, 9, 6, 7, 6, 0, 6, 2, 1, 6, 1, 6, 6, 3, 1, 2, 1, 3, 2, 9, 3, 0, 6, 2, 3, 8, 1, 7, 4, 4, 9, 0, 7, 2, 8, 8, 8, 3, 3, 6, 6, 1, 9, 7, 6, 9, 5, 8, 9, 6, 0, 9, 8, 6, 0, 7, 9, 9, 7, 6, 1, 8, 0, 0, 7, 1, 2, 6, 5, 0, 2, 0, 3, 6, 0, 1, 4, 4, 5, 8, 3, 3, 1, 8, 9, 7, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 24 2019

Keywords

Examples

			0.7247784590070763318182279676062161663121329...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[Pi/(2 Exp[1])] Erfi[1/Sqrt[2]], 10, 110] [[1]]
    RealDigits[Sqrt[2] DawsonF[1/Sqrt[2]], 10, 110] [[1]]

Formula

Equals sqrt(Pi/(2*exp(1)))*erfi(1/sqrt(2)), where erfi is the imaginary error function.
Equals (1/sqrt(e)) * Sum_{k>=0} 1/(2^k * k! * (2*k+1)) = 1/(sqrt(e)) * Sum_{k>=0} 1/A014481(k). - Amiram Eldar, Nov 12 2021
Equals 1/(1+A113014). - Jon Maiga, Nov 12 2021

A227569 Decimal expansion of maximal value of function F[a(n); b(n)] for pairs of complements a(n) and b(n) of natural numbers A000027, where a(n) = odd numbers (A005408) and b(n) = even numbers (A005843); see Comments for the definition of function F[a(n); b(n)].

Original entry on oeis.org

2, 0, 5, 9, 4, 0, 7, 4, 0, 5, 3, 4, 2, 5, 7, 6, 1, 4, 4, 5, 3, 9, 4, 7, 5, 4, 9, 9, 2, 3, 3, 2, 7, 8, 6, 1, 2, 9, 7, 7, 2, 5, 4, 7, 2, 6, 3, 3, 5, 3, 4, 0, 2, 0, 9, 2, 9, 9, 7, 1, 8, 7, 7, 9, 8, 0, 5, 4, 4, 2, 8, 1, 9, 6, 8, 4, 6, 1, 3, 5, 3, 5, 7, 4, 8, 1, 8, 5, 7, 4, 4, 8, 3, 4, 9, 7, 8, 2, 8, 3, 1, 5, 0, 1, 5
Offset: 1

Views

Author

Jaroslav Krizek, Jul 16 2013

Keywords

Comments

Apart from the first digit, the same as A143280. The sum of the reciprocals of the double factorial numbers, Sum_{n>=1} 1/n!! = Sum_{n>=2} n!!/n!. - Robert G. Wilson v, Jun 27 2015
Definition of function F[a(n); b(n)]: Let a(n) and b(n) is pair of complements of natural numbers (A000027) with a(1) < a(2) < a(3) < ... and b(1) < b(2) < b(3) < ..., then F[a(n); b(n)] = F[a(n)] + F[b(n)]; where F[a(n)] = 1/a(1) + 1/a(1)a(2) + 1/a(1)a(2)a(3) + ... and F[b(n)] = 1/b(1) + 1/b(1)b(2) + 1/b(1)b(2)b(3) + ...
Value of function F[a(n); b(n)] is real number c = a + b, where a = real number whose Engel expansion is sequence a(n) and b = real number whose Engel expansion is sequence b(n). See A006784 for definition of Engel expansion.
Example for a(n) = odd numbers (A005408) and b(n) = even numbers (A005843): c = 2.059407... = a + b, where a = 1.410686... (A060196) and b = 0.648721... (A019774 - 1).
Example for a(n) = nonprime numbers (A018252) and b(n) = primes (A000040): c = 2.002747... = a + b, where a = 1.297516... and b = 0.705230... (A064648).
Conjecture: there are no pairs of complements a(n) and b(n) such that F[a(n); b(n)] = 2.
e - 1 <= F[a(n); b(n)] <= sqrt(e) + sqrt((e*Pi)/2)*erf(1/sqrt(2)) - 1.
1.71828182... (A091131) <= F[a(n); b(n)] <= 2.05940740....

Examples

			2.05940740534257614453947549923327861297725472633534020929971877980544281968...
		

Crossrefs

Cf. A000027, A005408, A005843, A091131 (e-1), A006882 (n!!), A143280 (m(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(112)); R:= RealField(); -1 + Exp(1/2)*(1 + Sqrt(Pi(R)/2)*Erf(1/Sqrt(2)) ); // G. C. Greubel, Apr 01 2019
    
  • Mathematica
    RealDigits[Sqrt[E] -1 + Sqrt[E*Pi/2]*Erf[1/Sqrt[2]], 10, 105][[1]] (* or *)
    RealDigits[Sum[1/n!!, {n, 125}], 10, 105][[1]] (* Robert G. Wilson v, Apr 09 2014 *)
  • PARI
    default(realprecision, 100); exp(1/2) - 1 + sqrt(exp(1)*Pi/2)*(1-erfc(1/sqrt(2))) \\ G. C. Greubel, Apr 01 2019
    
  • Sage
    numerical_approx(-1 + exp(1/2)*(1 + sqrt(pi/2)*erf(1/sqrt(2))), digits=112) # G. C. Greubel, Apr 01 2019
Showing 1-8 of 8 results.