cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A354211 a(n) is the numerator of Sum_{k=0..n} 1 / (2*k+1)!.

Original entry on oeis.org

1, 7, 47, 5923, 426457, 15636757, 7318002277, 1536780478171, 603180793741, 142957467201379447, 60042136224579367741, 10127106976545720025649, 18228792557782296046168201, 12796612375563171824410077103, 3463616416319098507140327535879, 1380498543075754976417359117871773
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 7/6, 47/40, 5923/5040, 426457/362880, 15636757/13305600, 7318002277/6227020800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Numerator
    nmax = 15; CoefficientList[Series[Sinh[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Numerator
  • PARI
    a(n) = numerator(sum(k=0, n, 1/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354211(n): return sum(Fraction(1,factorial(2*k+1)) for k in range(n+1)).numerator # Chai Wah Wu, May 24 2022

Formula

Numerators of coefficients in expansion of sinh(sqrt(x)) / (sqrt(x) * (1 - x)).

A289488 a(n) = denominator of Sum_{k=1..n} 1/(2*k-1)!!.

Original entry on oeis.org

1, 3, 5, 105, 945, 3465, 135135, 2027025, 883575, 654729075, 13749310575, 8108567775, 718713961875, 213458046676875, 121378104973125, 191898783962510625, 372509404162520625, 73881031825566590625, 8200794532637891559375, 319830986772877770815625
Offset: 1

Views

Author

Seiichi Manyama, Sep 02 2017

Keywords

Examples

			1, 4/3, 7/5, 148/105, 1333/945, 4888/3465, 190633/135135, 2859496/2027025, 1246447/883575, 923617228/654729075, 19395961789/13749310575, 11438644132/8108567775, ... = A289381(n)/a(n) -> A060196.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[1/(2k-1)!!,{k,20}]]//Denominator (* Harvey P. Dale, Mar 01 2023 *)

Formula

Denominators of coefficients in expansion of sqrt(Pi*x*exp(x)/2) * erf(sqrt(x/2)) / (1 - x). - Ilya Gutkovskiy, May 24 2022

A354298 a(n) is the numerator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 2, 11, 76, 137, 7534, 97943, 1469144, 24975449, 94906706, 9965204131, 229199695012, 5729992375301, 9100576125478, 897316805972131, 563093542209232, 4589775462547450033, 5539384178936577626, 5943759223998947792699, 46361321947191792783052, 9504070999174317520525661
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, numer(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Numerator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Numerator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Numerator

Formula

Numerators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).
Showing 1-3 of 3 results.