cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A060196 Decimal expansion of 1 + 1/(1*3) + 1/(1*3*5) + 1/(1*3*5*7) + ...

Original entry on oeis.org

1, 4, 1, 0, 6, 8, 6, 1, 3, 4, 6, 4, 2, 4, 4, 7, 9, 9, 7, 6, 9, 0, 8, 2, 4, 7, 1, 1, 4, 1, 9, 1, 1, 5, 0, 4, 1, 3, 2, 3, 4, 7, 8, 6, 2, 5, 6, 2, 5, 1, 9, 2, 1, 9, 7, 7, 2, 4, 6, 3, 9, 4, 6, 8, 1, 6, 4, 7, 8, 1, 7, 9, 8, 4, 9, 0, 3, 9, 7, 9, 2, 7, 1, 1, 5, 4, 0, 9, 2, 2, 4, 7, 7, 8, 6, 1, 1, 6, 4, 0, 1, 4, 7, 2, 8, 9, 7
Offset: 1

Views

Author

Evan Michael Adams (evan(AT)tampabay.rr.com), Simon Plouffe, Mar 21 2001

Keywords

Examples

			1.410686134642447997690824711419115041323478...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.2, p. 423.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sqrt[E*Pi/2] * Erf[1/Sqrt[2]], 10, 107] // First
    (* or *) 1/Fold[Function[2*#2-1+(-1)^#2*#2/#1], 1, Reverse[Range[100]]] // N[#, 107]& // RealDigits // First (* Jean-François Alcover, Mar 07 2013, updated Sep 19 2014 *)
  • PARI
    { default(realprecision, 20080); x=2^(-1/2)*exp(1/2)*sqrt(Pi)*(1 - erfc(1/sqrt(2))); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060196.txt", n, " ", d)); } \\ Harry J. Smith, Jul 02 2009

Formula

c = sqrt(e*Pi/2)*erf(1/sqrt(2)), or 2^(-1/2)*exp(1/2)*sqrt(Pi)*(1 - erfc(1/sqrt(2))). - Michael Kleber, Mar 21 2001
From Peter Bala, Feb 09 2024: (Start)
Generalized continued fraction expansion:
c = 1/(1 - 1/(4 - 3/(6 - 5/(8 - 7/(10 - 9/(12 - ... )))))). See A286286.
c/(1 + c) = Sum_{n >= 0} (2*n-1)!!/(A112293(n) * A112293(n+1)) = 1/(1*2) + 1/(2*7) + 3/(7*36) + 15/(36*253) + 105/(253*2278) + ... = 0.5851803411..., a rapidly converging series. (End)
Equals Sum_{n >= 0} ((n - 1)*(n + 1)!*2^(n + 1))/(2*n)!. - Antonio Graciá Llorente, Feb 13 2024

Extensions

More terms from Vladeta Jovovic, Mar 27 2001

A112293 Row sums of number triangle A112292.

Original entry on oeis.org

1, 2, 7, 36, 253, 2278, 25059, 325768, 4886521, 83070858, 1578346303, 33145272364, 762341264373, 19058531609326, 514580353451803, 14922830250102288, 462607737753170929, 15266055345854640658, 534311937104912423031
Offset: 0

Views

Author

Paul Barry, Sep 01 2005

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := If[k <= n, (2 n - 1)!! / (2 k - 1)!!, 0];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jun 13 2019 *)

Formula

a(n) = Sum_{k=0..n} (2n-1)!!/(2k-1)!!.
a(n) = Sum_{k=0..n} 2^(n-k)(n-1/2)!/(k-1/2)!.
a(n) = Sum_{k=0..n} n!C(2n, n)2^(k-n)/(k!C(2k, k)).
a(n) = Sum_{k=0..n} (n+1)!*C(n)2^(k-n)/((k+1)!*C(k)).
Conjecture: a(n) - 2*n*a(n-1) + (2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 28 2014
a(n) = floor((2*n-1)!! * C) for n>0, where C = 1 + sqrt(e*Pi/2)*erf(1/sqrt(2)). - Don Knuth, Mar 25 2018
a(n) = 2^n*(C*Gamma(n + 1/2) + Gamma(n + 1/2, 1/2))*sqrt(e/2) for n >= 0, where C = sqrt(2/(e*Pi)) - erfc(1/sqrt(2)). - Peter Luschny, Mar 25 2018
a(n) = a(n-1) * (2*n-1) + 1 for n > 0 and a(0) = 1; that proves the conjecture of R. J. Mathar from Nov 28 2014; G.f. A(x) satisfies the equation: A(x) = 1/(1-x)^2 + A'(x) * 2*x^2/(1-x), where A' is the first derivative of A. - Werner Schulte, Oct 18 2023

A132424 a(0)=1 and, for n>0, a(n)=a(Floor((n-1)/a[n-1]))+2.

Original entry on oeis.org

1, 3, 3, 3, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 5, 7, 5, 7, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 5, 7, 5, 7, 5, 7, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

John W. Layman, Aug 20 2007

Keywords

Comments

Records are 1, 3, 5, 7, 9, ... and occur at {0,1,4,21,148,1333,14664,190633,2859496,48611433,...}, which appears to be A286286.

Crossrefs

Cf. A286286.
See A130147 for a related sequence.

Programs

  • Maple
    a[0]:=1: for n from 1 to 20000 do a[n]:=2+a[floor((n-1)/a[(n-1)])] end do: # N. J. A. Sloane, May 15 2017

A368792 a(n) = (2*n-1)!! * Sum_{k=0..n} k/(2*k-1)!!.

Original entry on oeis.org

0, 1, 5, 28, 200, 1805, 19861, 258200, 3873008, 65841145, 1250981765, 26270617076, 604224192760, 15105604819013, 407851330113365, 11827688573287600, 366658345771915616, 12099725410473215345, 423490389366562537093, 15669144406562813872460
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2n-1)!!Sum[k/(2k-1)!!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Sep 04 2025 *)
  • PARI
    a001147(n) = prod(k=1, n, 2*k-1);
    a(n) = a001147(n)*sum(k=0, n, k/a001147(k));

Formula

a(0) = 0; a(n) = (2*n-1)*a(n-1) + n.

A350557 Triangle T(n,k) read by rows with T(n,0) = (2*n)! / (2^n * n!) for n >= 0 and T(n,k) = (Sum_{i=k..n} binomial(i-1,k-1) * 2^i * i! / (2*i)!) * (2*n)! / (2^n * n!) for 0 < k <= n.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 15, 21, 7, 1, 105, 148, 52, 10, 1, 945, 1333, 472, 96, 13, 1, 10395, 14664, 5197, 1066, 153, 16, 1, 135135, 190633, 67567, 13873, 2009, 223, 19, 1, 2027025, 2859496, 1013512, 208116, 30170, 3380, 306, 22, 1
Offset: 0

Views

Author

Werner Schulte, Jan 05 2022

Keywords

Examples

			Triangle T(n,k) for 0 <= k <= n starts:
n\k :        0        1        2       3      4     5    6   7  8
=================================================================
  0 :        1
  1 :        1        1
  2 :        3        4        1
  3 :       15       21        7       1
  4 :      105      148       52      10      1
  5 :      945     1333      472      96     13     1
  6 :    10395    14664     5197    1066    153    16    1
  7 :   135135   190633    67567   13873   2009   223   19   1
  8 :  2027025  2859496  1013512  208116  30170  3380  306  22  1
  etc.
		

Crossrefs

Cf. A001147 (column 0), A286286 (column 1), A249349 (column 2).
Cf. A000007 (alternating row sums).
Cf. A350512.

Programs

  • Mathematica
    Flatten[Table[If[k==0,(2n)!/(2^n n!),Sum[Binomial[i-1,k-1]2^i i!/(2i)!,{i,k,n}](2n)!/(2^n n!)],{n,0,8},{k,0,n}]] (* Stefano Spezia, Jan 06 2022 *)

Formula

T(n,n) = 1.
T(n,k) = binomial(n-1,k-1) + (2*n - 1) * T(n-1,k) for 0 < k < n.
Conjecture: M(n,k) = (-1)^(n-k) * T(n,k) is matrix inverse of A350512.

A368794 a(n) = (2*n-1)!! * Sum_{k=1..n} (-1)^(k-1)/(2*k-1)!!.

Original entry on oeis.org

0, 1, 2, 11, 76, 685, 7534, 97943, 1469144, 24975449, 474533530, 9965204131, 229199695012, 5729992375301, 154709794133126, 4486584029860655, 139084104925680304, 4589775462547450033, 160642141189160751154, 5943759223998947792699, 231806609735958963915260
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a001147(n) = prod(k=1, n, 2*k-1);
    a(n) = a001147(n)*sum(k=1, n, (-1)^(k-1)/a001147(k));

Formula

a(0) = 0; a(n) = (2*n-1)*a(n-1) + (-1)^(n-1).
From Peter Bala, Feb 10 2024: (Start)
a(n) = (2*n - 2)*a(n-1) + (2*n - 3)*a(n-2) with a(0) = 0 and a(1) = 1.
The double factorial numbers (2*n-1)!! = A001147(n) satisfy the same recurrence, leading to the generalized continued fraction expansion Limit_{n -> oo} a(n)/(2*n-1)!! = Sum_{k >= 1} (-1)^(k-1)/(2*k-1)!! = 0.7247784590... = 1 - 1/(3 + 3/(4 + 5/(6 + 7/(8 + 9/(10 + ... ))))). (End)
Showing 1-6 of 6 results.