cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130147 a(0)=1. a(n+1) = a(floor(n/a(n))) + 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Leroy Quet, Aug 02 2007

Keywords

Comments

Records occur at 0,1,3,10,41,206,1237,8660,69281,623530,6235301, which appears to be A002627. See A132424 for a related sequence. - John W. Layman, Aug 20 2007

Crossrefs

See A130193 for "ceiling" version.

Programs

  • Maple
    a[0]:=1: for n from 0 to 110 do a[n+1]:=1+a[floor(n/a[n])] end do: seq(a[n],n=0..110); # Emeric Deutsch, Aug 19 2007
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 1 + a[Floor[(n - 1)/a[n - 1]]]; Array[a, 105, 0] (* Michael De Vlieger, Sep 03 2017 *)

Extensions

More terms from Emeric Deutsch and John W. Layman, Aug 19 2007

A286286 a(0) = 0; thereafter, a(n) = (2*n-1)*a(n-1) + 1.

Original entry on oeis.org

0, 1, 4, 21, 148, 1333, 14664, 190633, 2859496, 48611433, 923617228, 19395961789, 446107121148, 11152678028701, 301122306774928, 8732546896472913, 270708953790660304, 8933395475091790033, 312668841628212651156, 11568747140243868092773
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2017

Keywords

Crossrefs

Conjectured to give indices of records in A132424.
Cf. A001147, A002627 (similar sequence), A000522, A060196.

Programs

  • Mathematica
    NestList[{(2 #2 - 1) #1 + 1, #2 + 1} & @@ # &, {0, 1}, 19][[All, 1]] (* Michael De Vlieger, Dec 10 2021 *)

Formula

a(n) = (2*n-1)!! * Sum_{k=1..n} 1/(2*k-1)!!. - Seiichi Manyama, Sep 02 2017
a(n) = floor((2*n-1)!!*A060196), for n > 0. - Peter McNair, Dec 10 2021
From Peter Bala, Feb 09 2024: (Start)
a(n) = 2*n*a(n-1) - (2*n - 3)*a(n-2) with a(0) = 0 and a(1) = 1.
The double factorial numbers (2*n-1)!! = A001147(n) satisfy the same recurrence, leading to the generalized continued fraction expansion Limit_{n -> oo} a(n)/(2*n-1)!! = Sum_{k >= 1} 1/(2*k-1)!! = A060196 = 1/(1 - 1/(4 - 3/(6 - 5/(8 - 7/(10 - 9/(12 - ... )))))). (End)

A335901 a(n) = 2*a(floor((n-1)/a(n-1))) with a(1) = 1.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 8, 4, 4, 4, 4, 4, 8, 4, 8, 4, 4, 4, 4, 4, 8, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 4, 8, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 4, 8, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Altug Alkan, following a suggestion from Andrew R. Booker, Jun 29 2020

Keywords

Comments

Least k such that a(k) = 2^n are 1, 2, 5, 21, 169, 2705, ... (Conjecture: This sequence is A117261).

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
      2*procname(floor((n-1)/procname(n-1))) end proc:
    f(1):= 1:
    map(f, [$1..105]); # Robert Israel, Jul 08 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 2 * a[Floor[(n-1)/a[n-1]]]; Array[a, 100] (* Amiram Eldar, Jun 29 2020 *)
  • PARI
    a=vector(10^3); a[1]=1; for(n=2, #a, a[n]=2*a[(n-1)\a[n-1]]); a
Showing 1-3 of 3 results.