cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060222 Number of orbits of length n under the full 19-shift (whose periodic points are counted by A001029).

Original entry on oeis.org

19, 171, 2280, 32490, 495216, 7839780, 127695960, 2122929090, 35854187880, 613106378136, 10590023536200, 184442905990860, 3234844881712080, 57071906063500860, 1012075135324821024, 18027588346914850290, 322375697516753069760, 5784852794310472599780, 104127350297911241532840
Offset: 1

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

Number of monic irreducible polynomials of degree n over GF(19). - Andrew Howroyd, Dec 10 2017

Examples

			a(2)=171 since there are 361 points of period 2 in the full 19-shift and 19 fixed points, so there must be (361-19)/2 = 171 orbits of length 2.
		

Crossrefs

Column 19 of A074650.
Cf. A001029.

Programs

  • Magma
    A060222:= func< n | (1/n)*(&+[MoebiusMu(d)*(19)^Floor(n/d): d in Divisors(n)]) >;
    [A060222(n): n in [1..40]]; // G. C. Greubel, Sep 23 2024
    
  • Mathematica
    a[n_]:=(1/n) Sum[MoebiusMu[d] 19^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 20}] (* Vincenzo Librandi, Sep 19 2017 *)
  • PARI
    a001029(n) = 19^n;
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001029(n/d)); \\ Michel Marcus, Sep 11 2017
    
  • SageMath
    def A060222(n): return (1/n)*sum(moebius(k)*(19)^(n/k) for k in (1..n) if (k).divides(n))
    [A060222(n) for n in range(1, 41)] # G. C. Greubel, Sep 23 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001029(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 19*x^k))/k. - Ilya Gutkovskiy, May 20 2019

Extensions

More terms from Michel Marcus, Sep 11 2017