A007106 Number of labeled odd degree trees with 2n nodes.
1, 4, 96, 5888, 686080, 130179072, 36590059520, 14290429935616, 7405376630685696, 4917457306800619520, 4071967909087792857088, 4113850542422629363482624, 4980673081258443273955966976, 7119048451600750435732824260608, 11861520124846917915630931846103040
Offset: 1
Keywords
Examples
From _Peter Bala_, Apr 24 2012: (Start) Let G(x) = 1 + x^2/2! + 13*x^4/4! + 541*x^6/6! + ... be the e.g.f. for A143601. Then sinh(x*G(x)) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + .... Conjectural e.g.f. as an x-adic limit: sinh(x) = x + ...; sinh(x*cosh(x)) = x + 4*x^3/3! + ...; sinh(x*cosh(x*cosh(x))) = x + 4*x^3/3! + 96*x^5/5! + ...; sinh(x*cosh(x*cosh(x*cosh(x)))) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + .... (End)
References
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..211 (terms 1..39 from R. W. Robinson)
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
- Mathematics Stack Exchange, Marko R. Riedel, Odd degree trees
- Mathematics Stack Exchange, Marko R. Riedel, Odd degree trees II
- Marko Riedel, Count by Prüfer codes and Stirling numbers
- Index entries for sequences related to trees
Programs
-
Maple
A007106(n) = A(2n) where n>=2, A(n) = (add(binomial(n,q)*(n-2*q)^(n-2)/(n-2)!, q=0..n) - add(binomial(n-1,q)*(n-2*q)^(n-3)/(n-3)!, q=0..n-1) + add(binomial(n-1,q)*(n-2-2*q)^(n-3)/(n-3)!, q=0..n-1))*n!/2^(n+1)/(n-1)
-
Mathematica
{1}~Join~Array[(1/2)*Sum[Binomial[2 #, k]*(# - k)^(2 # - 2), {k, 0, # - 1}] &, 12, 2] (* Michael De Vlieger, Oct 13 2021 *)
-
PARI
a(n) = if(n<=1, n==1, sum(k=0, n-1, binomial(2*n,k) * (n-k)^(2*n-2))/2) \\ Andrew Howroyd, Nov 22 2021
Formula
a(n) = A060279(n)/(2*n). - Vladeta Jovovic, Feb 08 2005
Bisection of A058014. The expansion 1/sqrt(1+x^2)*arcsinh(x) = x - 4*x^3/3! + 64*x^5/5! - ... (see A002454) has series reversion x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + .... The coefficients appear to be the terms of this sequence. As an x-adic limit this e.g.f. equals lim_{n -> infinity} sinh(f(n,x)), where f(0,x) = x and f(n,x) = x*cosh(f(n-1,x)) for n >= 1. See the example section below. - Peter Bala, Apr 24 2012
a(n) = Sum_{k=1..n} binomial(n,k) * k! * (n-2)! [z^{n-2}] [u^k] exp(u(exp(z)+exp(-z)-2)/2)). - Marko Riedel, Jun 16 2016
From Alexander Burstein, Oct 13 2021: (Start)
a(n) = (1/2) * Sum_{k=0..n-1} binomial(2*n,k) * (n-k)^(2*n-2) for n >= 2.
a(n) = (2*n-1)!*[x^(2*n-1)] sinh(REVERT(x/cosh(x))), see A036778. (End)
a(n) = Sum_{k=0..n-1} A156289(n-1, k)*(2*n)!/(2*n-k)!. - Peter Luschny, May 07 2022
Extensions
Corrected and extended by Vladeta Jovovic, Feb 08 2005