cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083124 Continued fraction expansion of tanh(Pi/2).

Original entry on oeis.org

0, 1, 11, 14, 4, 1, 1, 1, 3, 1, 295, 4, 4, 1, 5, 17, 2, 8, 2, 15, 3, 1, 1, 1, 5, 54, 4, 1, 2, 1, 1, 16, 2, 2, 2, 5, 1, 1, 2, 1, 82, 1, 6, 1, 1, 1, 1, 3, 1, 1, 4, 1, 3, 3, 1, 5, 1, 1, 1, 282, 1, 5, 1, 1, 1, 1, 2, 10, 2, 1, 39, 1, 1, 5, 2, 1, 6, 4, 1, 22, 1, 1, 6, 1, 3, 5, 3, 1, 2, 9, 1, 3, 6, 23, 1, 1, 1, 14, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2003

Keywords

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 11.

Crossrefs

Cf. A060402, A084304, A367960 (decimal expansion).

Programs

  • Maple
    with(numtheory): c := cfrac (tanh(Pi/2),300,'quotients');
  • Mathematica
    ContinuedFraction[Tanh[Pi/2], 100] (* Paolo Xausa, Jul 04 2024 *)
  • PARI
    contfrac(tanh(Pi/2)) \\ Michel Marcus, Apr 11 2021

A084304 Continued fraction expansion of tanh(Pi^2).

Original entry on oeis.org

0, 1, 186895766, 8, 1, 11, 2, 3, 5, 8, 2, 2, 1, 19, 2, 23, 3, 1, 3, 1, 4, 2, 1, 1, 1, 2, 2, 25, 1, 19, 1, 1, 1, 6, 6, 2, 11, 1, 5, 2, 11, 1, 3, 1, 2, 1, 5, 1, 2, 7, 15, 4, 1, 7, 24, 1, 1, 1, 18, 2, 2, 25, 6, 4, 1, 1, 1, 2, 1, 2, 2, 2, 40, 1, 3, 3, 2, 2, 2, 16, 1, 361, 1, 2, 1, 4, 1, 13, 1, 5, 2, 1, 5
Offset: 0

Views

Author

Labos Elemer, Jun 04 2003

Keywords

Comments

The least term that is larger than a(2) is a(6427449) = 890522226. - Amiram Eldar, Mar 08 2025

Crossrefs

Programs

  • Maple
    with(numtheory): c := cfrac (tanh(Pi^2), 300, 'quotients');
  • Mathematica
    ContinuedFraction[Tanh[Pi^2],120] (* Harvey P. Dale, Nov 10 2021 *)
  • PARI
    contfrac(tanh(Pi^2)) \\ Michel Marcus, Apr 05 2015

A190352 The continued fraction expansion of tanh(Pi) requires the computation of the pairs (p_n, q_n); sequence gives values of q_n.

Original entry on oeis.org

1, 1, 268, 1073, 15290, 16363, 48016, 64379, 176774, 417927, 594701, 1607329, 5416688, 44940833, 140239187, 185180020, 1066139287, 4449737168, 5515876455, 81672007538, 822235951835, 903907959373, 18900395139295, 719118923252583, 738019318391878
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2011

Keywords

Comments

a(2) = 268 explains the comment in A021085 that "The decimal expansion of Sum_{n>=1} floor(n * tanh(Pi))/10^n is the same as that of 1/81 for the first 268 decimal places [Borwein et al.]".

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 13.

Crossrefs

Programs

  • Maple
    lim:=50: with(numtheory): cfr := cfrac(tanh(Pi),lim+10,'quotients'): q[0]:=1:q[1]:=cfr[2]: printf("%d, %d, ", q[0], q[1]): for n from 2 to lim do q[n]:=cfr[n+1]*q[n-1]+q[n-2]: printf("%d, ",q[n]): od: # Nathaniel Johnston, May 10 2011
  • Mathematica
    a[0] := 1; a[1] := 1; A060402:= ContinuedFraction[Tanh[Pi], 100];
    a[n_]:= a[n] = A060402[[n + 1]]*a[n - 1] + a[n - 2]; Join[{1, 1}, Table[a[n], {n, 2, 75}]] (* G. C. Greubel, Apr 05 2018 *)

Formula

a(n) = A060402(n)*a(n-1) + a(n-2) for n >= 2. - Nathaniel Johnston, May 10 2011

Extensions

a(4)-a(24) from Nathaniel Johnston, May 10 2011
Showing 1-3 of 3 results.