cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A060402 Continued fraction expansion of tanh(Pi).

Original entry on oeis.org

0, 1, 267, 4, 14, 1, 2, 1, 2, 2, 1, 2, 3, 8, 3, 1, 5, 4, 1, 14, 10, 1, 20, 38, 1, 2, 7, 5, 2, 1, 10, 1, 6, 1, 6, 1, 2, 3, 2, 1, 7, 1, 1, 5, 12, 2, 1, 1, 1, 2, 1, 1, 1, 34, 1, 8, 1, 33, 1, 4, 7, 1, 2, 56, 1, 3, 1, 34, 9, 1, 1, 7, 1, 3, 1, 7, 1, 4, 3, 1, 2, 14, 1, 10, 2, 51, 1, 6, 7, 17, 1, 14, 1, 8, 1, 1
Offset: 0

Views

Author

Bill Gosper, Apr 04 2001

Keywords

Examples

			0.996272076220749944264690... = 0 + 1/(1 + 1/(267 + 1/(4 + 1/(14 + ...)))). - _Harry J. Smith_, Jul 04 2009
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 11.

Crossrefs

Programs

  • Maple
    with(numtheory): c := cfrac (tanh(Pi),300,'quotients');
  • Mathematica
    ContinuedFraction[Tanh[Pi], 100] (* Paolo Xausa, Jul 04 2024 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(tanh(Pi)); for (n=0, 20000, write("b060402.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jul 04 2009

Extensions

More terms from James Sellers, Apr 06 2001

A084304 Continued fraction expansion of tanh(Pi^2).

Original entry on oeis.org

0, 1, 186895766, 8, 1, 11, 2, 3, 5, 8, 2, 2, 1, 19, 2, 23, 3, 1, 3, 1, 4, 2, 1, 1, 1, 2, 2, 25, 1, 19, 1, 1, 1, 6, 6, 2, 11, 1, 5, 2, 11, 1, 3, 1, 2, 1, 5, 1, 2, 7, 15, 4, 1, 7, 24, 1, 1, 1, 18, 2, 2, 25, 6, 4, 1, 1, 1, 2, 1, 2, 2, 2, 40, 1, 3, 3, 2, 2, 2, 16, 1, 361, 1, 2, 1, 4, 1, 13, 1, 5, 2, 1, 5
Offset: 0

Views

Author

Labos Elemer, Jun 04 2003

Keywords

Comments

The least term that is larger than a(2) is a(6427449) = 890522226. - Amiram Eldar, Mar 08 2025

Crossrefs

Programs

  • Maple
    with(numtheory): c := cfrac (tanh(Pi^2), 300, 'quotients');
  • Mathematica
    ContinuedFraction[Tanh[Pi^2],120] (* Harvey P. Dale, Nov 10 2021 *)
  • PARI
    contfrac(tanh(Pi^2)) \\ Michel Marcus, Apr 05 2015

A367960 Decimal expansion of tanh(Pi/2).

Original entry on oeis.org

9, 1, 7, 1, 5, 2, 3, 3, 5, 6, 6, 7, 2, 7, 4, 3, 4, 6, 3, 7, 3, 0, 9, 2, 9, 2, 1, 4, 4, 2, 6, 1, 8, 7, 7, 5, 3, 6, 7, 9, 2, 7, 1, 4, 8, 6, 0, 1, 0, 8, 8, 9, 4, 5, 3, 4, 3, 5, 7, 4, 1, 2, 4, 2, 9, 1, 5, 0, 6, 1, 7, 1, 4, 0, 7, 0, 1, 9, 7, 1, 5, 0, 4, 4, 1, 4, 9, 4, 8, 6, 4, 6
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2023

Keywords

Examples

			0.91715233566727434637309...
		

References

  • Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 225.

Crossrefs

Cf. A367961, A367959, A308715, A083124 (cont. frac).

Programs

  • Maple
    evalf(tanh(Pi/2)) ;
  • Mathematica
    First[RealDigits[Tanh[Pi/2],10,100]] (* Paolo Xausa, Dec 06 2023 *)

Formula

Equals 1/A367961 = A367959 / A308715 = (2/Pi)*A228048.
Equals (e^Pi - 1)/(e^Pi + 1) = K_{n>0} Pi^(2-[n=1])/(4*n - 2) (see Clawson at p. 225). - Stefano Spezia, Jul 01 2024

A084305 Continued fraction expansion of tanh(tanh(1)).

Original entry on oeis.org

0, 1, 1, 1, 3, 1, 5, 3, 1, 2, 85, 1, 2, 2, 2, 1, 1, 1, 2, 5, 1, 7, 1, 1, 4, 1, 4, 1, 1, 1, 1, 6, 3, 1, 3, 3, 2, 1, 9, 12, 16, 4, 1, 1, 1, 2, 1, 2, 1, 49, 3, 7, 1, 2, 6, 1, 1, 1, 6, 1, 3, 2, 1, 1, 5, 2, 1, 199, 8, 1, 8, 1, 1, 2, 2, 1, 9, 1, 4, 4, 4, 2, 2, 1, 2, 1, 3, 1, 249, 1, 2, 2, 1, 1, 4, 1, 1, 135, 3, 2, 1
Offset: 0

Views

Author

Labos Elemer, Jun 04 2003

Keywords

Comments

While the continued fraction of tanh(1) = {0, 1, 3, 5, 7, 11, ..}, i.e., 0 and odd numbers, twice applying tanh() we get this sequence.

Crossrefs

Programs

  • Maple
    with(numtheory); cfrac(tanh(tanh(tanh(1))),300,'quotients');
  • Mathematica
    ContinuedFraction[Tanh[Tanh[1]],120] (* Harvey P. Dale, Jan 19 2024 *)
  • PARI
    contfrac(tanh(tanh(1))) \\ Amiram Eldar, Mar 08 2025
Showing 1-4 of 4 results.