cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060431 Number of cubefree numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 33, 34, 34, 35, 36, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 46, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 61
Offset: 1

Views

Author

Vladeta Jovovic, Apr 06 2001

Keywords

References

  • I. M. Vinogradov, Elements of the Theory of Numbers,(in Russian), Moscow, 1981, p. 36.

Crossrefs

Programs

  • Haskell
    a060431 n = a060431_list !! (n-1)
    a060431_list = scanl1 (+) a212793_list -- Reinhard Zumkeller, May 27 2012
    
  • Magma
    [&+[MoebiusMu(d)*Floor(n div d^3):d in [1..n]]:n in [1..75]]; // Marius A. Burtea, Oct 02 2019
    
  • PARI
    a(n)=sum(k=1,n,moebius(k)*floor(n/k^3)) \\ Benoit Cloitre, Jun 13 2007
    
  • PARI
    for (n=1, 500, a=sum(k=1, n, moebius(k)*floor(n/k^3)); write("b060431.txt", n, " ", a)) \\ Harry J. Smith, Jul 05 2009
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,sqrtnint(n,3), s+=n\k[1]^3*moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from sympy import mobius, integer_nthroot
    def A060431(n): return sum(mobius(k)*(n//k**3) for k in range(1, integer_nthroot(n,3)[0]+1)) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = Sum_{d>=1} mu(d)*floor(n/d^3), mu(d) = Moebius function A008683.
a(n) is asymptotic to (1/zeta(3))*n, see A088453. - Benoit Cloitre, Jun 13 2007
a(n) = Sum_{k = 1..n} A212793(k). - Reinhard Zumkeller, May 27 2012