cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060432 Partial sums of A002024.

Original entry on oeis.org

1, 3, 5, 8, 11, 14, 18, 22, 26, 30, 35, 40, 45, 50, 55, 61, 67, 73, 79, 85, 91, 98, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 188, 196, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 396, 407, 418
Offset: 1

Views

Author

Robert A. Stump (bobess(AT)netzero.net), Apr 06 2001

Keywords

Comments

In other words, first differences give A002024.
Equals A010054 convolved with [1, 2, 3, ...]. - Gary W. Adamson, Mar 16 2010

Examples

			a(7) = 1 + 2 + 2 + 3 + 3 + 3 + 4 = 18.
		

Crossrefs

Programs

  • Haskell
    a060432 n = sum $ zipWith (*) [n,n-1..1] a010054_list
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Maple
    ListTools:-PartialSums([seq(n$n,n=1..10)]); # Robert Israel, Jan 28 2016
  • Mathematica
    a[n_] := Sum[Floor[1/2 + Sqrt[2*k]], {k, 1, n}]; Array[a, 60] (* Jean-François Alcover, Jan 10 2016 *)
    Accumulate[Table[PadRight[{},n,n],{n,15}]//Flatten] (* Harvey P. Dale, May 24 2025 *)
  • PARI
    f(n) = floor(1/2+sqrt(2*n))
    for(n=1,100,print1(sum(k=1,n,f(k)),","))
    
  • PARI
    { default(realprecision, 100); for (n=1, 1000, a=sum(k=1, n, floor(1/2 + sqrt(2*k))); write("b060432.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 05 2009
    
  • Python
    from math import isqrt
    def A060432(n): return (k:=(r:=isqrt(m:=n+1<<1))+int((m<<2)>(r<<2)*(r+1)+1)-1)*(k*(-k - 3) + 6*n - 2)//6 + n # Chai Wah Wu, Oct 16 2022

Formula

Let f(n) = floor(1/2 + sqrt(2*n)), then this function is S(n) = f(1) + f(2) + f(3) + ... + f(n).
a(n) is asymptotic to c*n^(3/2) with c=0.9428.... - Benoit Cloitre, Dec 18 2002
a(n) is asymptotic to c*n^(3/2) with c = (2/3)*sqrt(2) = .942809.... - Franklin T. Adams-Watters, Sep 07 2006
Set R = round(sqrt(2*n)), then a(n) = ((6*n+1)*R-R^3)/6. - Gerald Hillier, Nov 28 2008
G.f.: W(0)/(2*(1-x)^2), where W(k) = 1 + 1/( 1 - x^(k+1)/( x^(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013
a(n) = A000330(A003056(n)) + (A003056(n) + 1) * (n - A057944(n)). This represents a closed form, because all of the constituent sequences (i.e., A003056, A000330, A057944) have a known closed form. - Peter Kagey, Jan 28 2016
G.f.: x^(7/8)*Theta_2(0,x^(1/2))/(2*(1-x)^2) where Theta_2 is a Jacobi theta function. - Robert Israel, Jan 28 2016
G.f.: (x/(1 - x)^2)*Product_{k>=1} (1 - x^(2*k))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, May 30 2017
a(n) = n*(k+1)-k*(k+1)*(k+2)/6 where k = A003056(n) is the largest integer such that k*(k+1)/2 <= n. - Bogdan Blaga, Feb 04 2021

Extensions

More terms from Jason Earls, Jan 08 2002