cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060541 a(n) = binomial(4*n, 4).

Original entry on oeis.org

1, 70, 495, 1820, 4845, 10626, 20475, 35960, 58905, 91390, 135751, 194580, 270725, 367290, 487635, 635376, 814385, 1028790, 1282975, 1581580, 1929501, 2331890, 2794155, 3321960, 3921225, 4598126, 5359095, 6210820, 7160245, 8214570, 9381251, 10668000, 12082785
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(4 n, 4): n in [1..40]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    Table[Binomial[4n, 4], {n, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,70,495,1820,4845},40] (* Harvey P. Dale, Jan 13 2015 *)
  • PARI
    a(n) = n*(2*n - 1)*(4*n - 1)*(4*n - 3)/3; \\ Harry J. Smith, Jul 06 2009
    

Formula

a(n) = n*(2n-1)*(4n-1)*(4n-3)/3.
a(n) = n * A015219(n-1) = A000332(4n) = A060539(n, 4).
G.f.: x*(1+65*x+155*x^2+35*x^3) / (1-x)^5. - R. J. Mathar, Oct 03 2011
From Amiram Eldar, Mar 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*log(sqrt(2)-1) - log(2) + (2*sqrt(2) - 3/2)*Pi. (End)

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Jul 06 2009