A060774 a(n) = number of lattice paths from (0,0,0) to (n,n,n) along the cracks on the surface of a Rubik-ized n X n X n cube so that no step increases distance from goal.
1, 6, 54, 384, 2550, 16506, 105840, 677088, 4335606, 27829230, 179161554, 1156987728, 7493841264, 48672149064, 316920674880, 2068273848384, 13525486999542, 88612412883030, 581503640659830, 3821691744347400, 25150239955660050, 165713382866931570
Offset: 0
Examples
a(1)=6: XYZ, XZY, YXZ, YZX, ZXY, ZYX.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 1..200 from Harry J. Smith)
- W. Li and E. T. H. Wang, A bug's shortest path on a cube, Mathematics Magazine 58:4 (Sept. 1985), pp. 219-221.
Crossrefs
Column k=3 of A225094.
Programs
-
Maple
A060774 := proc(n) `if`(n=0, 1, 6*(binomial(3*n,n)-binomial(2*n,n)) ) ; end proc: # R. J. Mathar, Oct 31 2015
-
Mathematica
Rest[CoefficientList[Series[-(6/Sqrt[1-4z])+(12Cos[ArcCos[1-27z/2]/6])/Sqrt[4-27z], {z, 0, 20}], z]] (* Benedict W. J. Irwin, Jul 12 2016 *)
-
PARI
j=[]; for(n=1,50,j=concat(j,6*(binomial(3*n,n)-binomial(2*n,n)))); j
-
PARI
{ for (n=1, 200, write("b060774.txt", n, " ", 6*(binomial(3*n, n) - binomial(2*n, n))); ) } \\ Harry J. Smith, Jul 11 2009
Formula
a(n) = 6*binomial(3n, n) - 6*binomial(2n, n).
a(n) = 6*A000846(n) for n>0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(2*n-1)*(n-1)*a(n) + (n-1)*(13*n^2-209*n+258)*a(n-1) + 2*(-259*n^3+1785*n^2-3728*n+2460)*a(n-2) + 6*(295*n^3-2068*n^2+4833*n-3780)*a(n-3) - 36*(3*n-10)*(2*n-7)*(3*n-11)*a(n-4) = 0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(n-1)*(2*n-1)*(11*n^2-33*n+24)*a(n) - (n-1)*(473*n^4-1892*n^3+2561*n^2-1338*n+216)*a(n-1) + 6*(3*n-5)*(3*n-4)*(2*n-3)*(11*n^2-11*n+2)*a(n-2) = 0. - R. J. Mathar, Oct 31 2015
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: -6/sqrt(1-4*x) + 12*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x).
E.g.f: -6*E^(2*x)*BesselI(0,2*x) + 6*2F2(1/3,2/3;1/2,1;27*x/4).
(End)
a(n) ~ 4^(-n)*(3^(3*n+3/2))/sqrt(Pi*n). - Ilya Gutkovskiy, Jul 12 2016
Extensions
Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(0)=1 prepended by Alois P. Heinz, Sep 09 2016
Comments