cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060774 a(n) = number of lattice paths from (0,0,0) to (n,n,n) along the cracks on the surface of a Rubik-ized n X n X n cube so that no step increases distance from goal.

Original entry on oeis.org

1, 6, 54, 384, 2550, 16506, 105840, 677088, 4335606, 27829230, 179161554, 1156987728, 7493841264, 48672149064, 316920674880, 2068273848384, 13525486999542, 88612412883030, 581503640659830, 3821691744347400, 25150239955660050, 165713382866931570
Offset: 0

Views

Author

Len Smiley, Apr 25 2001

Keywords

Comments

3-dimensional version of block-walking (0,0) to (n,n) in binomial(2n,n) ways.

Examples

			a(1)=6: XYZ, XZY, YXZ, YZX, ZXY, ZYX.
		

Crossrefs

Column k=3 of A225094.

Programs

  • Maple
    A060774 := proc(n)
            `if`(n=0, 1,
            6*(binomial(3*n,n)-binomial(2*n,n)) ) ;
    end proc: # R. J. Mathar, Oct 31 2015
  • Mathematica
    Rest[CoefficientList[Series[-(6/Sqrt[1-4z])+(12Cos[ArcCos[1-27z/2]/6])/Sqrt[4-27z], {z, 0, 20}], z]] (* Benedict W. J. Irwin, Jul 12 2016 *)
  • PARI
    j=[]; for(n=1,50,j=concat(j,6*(binomial(3*n,n)-binomial(2*n,n)))); j
    
  • PARI
    { for (n=1, 200, write("b060774.txt", n, " ", 6*(binomial(3*n, n) - binomial(2*n, n))); ) } \\ Harry J. Smith, Jul 11 2009

Formula

a(n) = 6*binomial(3n, n) - 6*binomial(2n, n).
a(n) = 6*A000846(n) for n>0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(2*n-1)*(n-1)*a(n) + (n-1)*(13*n^2-209*n+258)*a(n-1) + 2*(-259*n^3+1785*n^2-3728*n+2460)*a(n-2) + 6*(295*n^3-2068*n^2+4833*n-3780)*a(n-3) - 36*(3*n-10)*(2*n-7)*(3*n-11)*a(n-4) = 0. - R. J. Mathar, Oct 31 2015
Conjecture: 2*n*(n-1)*(2*n-1)*(11*n^2-33*n+24)*a(n) - (n-1)*(473*n^4-1892*n^3+2561*n^2-1338*n+216)*a(n-1) + 6*(3*n-5)*(3*n-4)*(2*n-3)*(11*n^2-11*n+2)*a(n-2) = 0. - R. J. Mathar, Oct 31 2015
From Benedict W. J. Irwin, Jul 12 2016: (Start)
G.f.: -6/sqrt(1-4*x) + 12*cos(arccos(1-27*x/2)/6)/sqrt(4-27*x).
E.g.f: -6*E^(2*x)*BesselI(0,2*x) + 6*2F2(1/3,2/3;1/2,1;27*x/4).
(End)
a(n) ~ 4^(-n)*(3^(3*n+3/2))/sqrt(Pi*n). - Ilya Gutkovskiy, Jul 12 2016

Extensions

Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(0)=1 prepended by Alois P. Heinz, Sep 09 2016