A060790 Inscribe two circles of curvature 2 inside a circle of curvature -1. Sequence gives curvatures of the smallest circles that can be sequentially inscribed in such a diagram.
-1, 2, 2, 3, 15, 38, 110, 323, 927, 2682, 7754, 22403, 64751, 187134, 540822, 1563011, 4517183, 13054898, 37729362, 109039875, 315131087, 910745750, 2632104062, 7606921923, 21984412383, 63536130986, 183622826522, 530679817859, 1533693138351, 4432455434478
Offset: 0
Examples
After circles of 2, 2, 3, 15 have been inscribed in the diagram, the next smallest circle that can be inscribed has a curvature of 38.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Jeffrey C. Lagarias, Colin L. Mallows and Allan Wilks, Beyond the Descartes Circle Theorem, arXiv:math/0101066 [math.MG], 2001.
- Jeffrey C. Lagarias, Colin L. Mallows and Allan Wilks, Beyond the Descartes Circle Theorem, Amer. Math Monthly, 109 (2002), 338-361.
- I. Peterson, Circle Game, Science News, 4/21/01.
- Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, -1).
Programs
-
GAP
a:=[-1,2,2,3];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
-
Maple
seq(coeff(series((x-1)*(1-3*x-3*x^2)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
-
Mathematica
CoefficientList[Series[(-3 z^3 + 4 z - 1)/(z^4 - 2 z^3 - 2 z^2 - 2 z + 1), {z, 0, 100}], z] (* and *) LinearRecurrence[{2, 2, 2, -1}, {-1, 2, 2, 3}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
-
PARI
{ for (n=0, 200, if (n>3, a=2*a1 + 2*a2 + 2*a3 - a4; a4=a3; a3=a2; a2=a1; a1=a, if (n==0, a=a4=-1, if (n==1, a=a3=2, if (n==2, a=a2=2, a=a1=3)))); write("b060790.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 12 2009
Formula
a(n) = 2a(n-1) + 2a(n-2) + 2a(n-3) - a(n-4).
G.f.: -(1-x)*(1 - 3*x - 3*x^2)/(1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Apr 22 2012
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018
Extensions
Corrected by T. D. Noe, Nov 08 2006
Comments