cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060790 Inscribe two circles of curvature 2 inside a circle of curvature -1. Sequence gives curvatures of the smallest circles that can be sequentially inscribed in such a diagram.

Original entry on oeis.org

-1, 2, 2, 3, 15, 38, 110, 323, 927, 2682, 7754, 22403, 64751, 187134, 540822, 1563011, 4517183, 13054898, 37729362, 109039875, 315131087, 910745750, 2632104062, 7606921923, 21984412383, 63536130986, 183622826522, 530679817859, 1533693138351, 4432455434478
Offset: 0

Views

Author

Brian Galebach, Apr 26 2001

Keywords

Comments

The ratio of successive terms approaches the constant phi+sqrt(phi) ~= 2.89005363826396..., where phi is the golden ratio (sqrt(5)+1)/2. The ratio between the curvatures of two successively smaller circles approaches this constant in any apollonian packing as the curvatures increase.
For more comments, references and links, see A189226.

Examples

			After circles of 2, 2, 3, 15 have been inscribed in the diagram, the next smallest circle that can be inscribed has a curvature of 38.
		

Crossrefs

Programs

  • GAP
    a:=[-1,2,2,3];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
  • Maple
    seq(coeff(series((x-1)*(1-3*x-3*x^2)/(1-2*x-2*x^2-2*x^3+x^4),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
  • Mathematica
    CoefficientList[Series[(-3 z^3 + 4 z - 1)/(z^4 - 2 z^3 - 2 z^2 - 2 z + 1), {z, 0, 100}], z] (* and *) LinearRecurrence[{2, 2, 2, -1}, {-1, 2, 2, 3}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
  • PARI
    { for (n=0, 200, if (n>3, a=2*a1 + 2*a2 + 2*a3 - a4; a4=a3; a3=a2; a2=a1; a1=a, if (n==0, a=a4=-1, if (n==1, a=a3=2, if (n==2, a=a2=2, a=a1=3)))); write("b060790.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 12 2009
    

Formula

a(n) = 2a(n-1) + 2a(n-2) + 2a(n-3) - a(n-4).
G.f.: -(1-x)*(1 - 3*x - 3*x^2)/(1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Apr 22 2012
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018

Extensions

Corrected by T. D. Noe, Nov 08 2006