cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060866 Sum of (d+d') over all unordered pairs (d,d') with d*d' = n.

Original entry on oeis.org

2, 3, 4, 9, 6, 12, 8, 15, 16, 18, 12, 28, 14, 24, 24, 35, 18, 39, 20, 42, 32, 36, 24, 60, 36, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 97, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 64, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 135, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Jason Earls, May 04 2001

Keywords

Comments

Paraphrasing the Jovovic formula: if n is not a square then a(n) = sigma(n), the sum of divisors of n, otherwise a(n) = sigma(n) + sqrt(n). - Omar E. Pol, Jun 23 2009
Row sums of A161901. - Omar E. Pol, Jan 06 2014

Examples

			a(4)=9 because pairs of factors are 1*4 and 2*2 and 1+4+2+2=9. a(6)=12 because pairs of factors are 1*6 and 2*3 and 1+6+2+3=12.
		

Crossrefs

Programs

  • Maple
    A060866 := proc(n)
            numtheory[sigma](n) ;
            if issqr(n) then
                    %+sqrt(n) ;
            else
                    % ;
            end if;
    end proc: # R. J. Mathar, Oct 24 2011
  • Mathematica
    Table[Sum[(i^2 + n) (1 - Ceiling[n/i] + Floor[n/i])/i, {i, Floor[Sqrt[n]]}], {n, 100}] (* Wesley Ivan Hurt, Jul 14 2014 *)
    Array[If[IntegerQ@ #2, #3 + #2, #3] & @@ {#, Sqrt@ #, DivisorSigma[1, #]} &, 69] (* Michael De Vlieger, Nov 23 2017 *)
  • PARI
    A037213(n) = if(issquare(n,&n),n,0);
    A060866(n) = (sigma(n)+A037213(n)); \\ Antti Karttunen, Nov 23 2017, after Jan 25 2003 formula of Vladeta Jovovic

Formula

a(n) = A066839(n)+A070038(n) = A000203(n)+A037213(n). G.f.: Sum_{n>0} n*x^n*(x^(n*(n-1))-x^(n^2)+1)/(1-x^n). - Vladeta Jovovic, Jan 25 2003
a(n) = sum_{i=1..floor(sqrt(n))} (n+i^2)*(1-ceiling(n/i)+floor(n/i))/i. - Wesley Ivan Hurt, Jul 14 2014

Extensions

More terms from Erich Friedman, Jun 03 2001