0, 1, 2, 3, 4, 6, 6, 9, 8, 12, 10, 16, 12, 18, 16, 21, 16, 27, 18, 28, 24, 30, 22, 40, 24, 36, 32, 42, 28, 50, 30, 49, 40, 48, 36, 65, 36, 54, 48, 66, 40, 72, 42, 70, 60, 66, 46, 92, 48, 77, 64, 84, 52, 96, 60, 92, 72, 84, 58, 126, 60, 90, 82, 105, 72, 120, 66, 112, 88, 114, 70
Offset: 1
A161901
Array read by rows in which row n lists the divisors of n, but if n is a square then the square root of n appears twice.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 1, 2, 2, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 3, 3, 9, 1, 2, 5, 10, 1, 11, 1, 2, 3, 4, 6, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 4, 4, 8, 16, 1, 17, 1, 2, 3, 6, 9, 18, 1, 19, 1, 2, 4, 5, 10, 20, 1, 3, 7, 21
Offset: 1
Array begins:
....... 1,1;
....... 1,2;
....... 1,3;
..... 1,2,2,4;
....... 1,5;
..... 1,2,3,6;
....... 1,7;
..... 1,2,4,8;
..... 1,3,3,9;
..... 1,2,5,10;
....... 1,11;
... 1,2,3,4,6,12;
....... 1,13;
..... 1,2,7,14;
..... 1,3,5,15;
... 1,2,4,4,8,16;
-
dsr[n_]:=If[IntegerQ[Sqrt[n]],Sort[Join[{Sqrt[n]},Divisors[n]]],Divisors[ n]]; Array[ dsr,30]//Flatten (* Harvey P. Dale, Sep 27 2020 *)
A057246
s=0; d is divisor of n [here d <= n/d]; if gcd(d,n/d)=1 or gcd(d,n/d)=d then s=s+d+(n/d); [if d=n/d then s=s+d]: The sequence contains composite n for which s = 2*n.
Original entry on oeis.org
6, 28, 6966, 15066
Offset: 1
a(2)=28, gcd(1,28)=gcd(4,28/4)=1, gcd(2,28/2)=2, 1+28+4+7+2+14=56. 56-28=28.
-
f[ n_Integer ] := (ds = Divisors[ n ]; sq = N[ Sqrt[ n ] ]; l = 1; While[ ds[[ l ] ] <= sq, l++ ]; l = l - 1; ds = Take[ ds, l ]; s = 1; k = 2; While[ k <= l, If[ GCD[ ds[[ k ] ], n/ds[[ k ] ] ] == 1 || GCD[ ds[[ k ] ], n/ds[[ k ] ] ] == ds[[ k ] ], s = s + ds[[ k ] ] + n/ds[[ k ] ] ]; k++ ]; If[ ds[[ -1 ] ] == n/ds[[ -1 ] ], s = s - d ]; s) Do[ If[ ! PrimeQ[ n ] && f[ n ] == n, Print[ n ] ], {n, 2, 33429000} ] (* Robert G. Wilson v, Nov 09 2000 *)
-
is(n)=my(s,g);fordiv(n,d,if(d^2Charles R Greathouse IV, Oct 23 2011
A238288
Triangle read by rows T(n,k), n>=1, k>=1, in which column k lists the positive integers interleaved with k-1 zeros, but starting from 2*k at row k^2.
Original entry on oeis.org
2, 3, 4, 5, 4, 6, 0, 7, 5, 8, 0, 9, 6, 10, 0, 6, 11, 7, 0, 12, 0, 0, 13, 8, 7, 14, 0, 0, 15, 9, 0, 16, 0, 8, 17, 10, 0, 8, 18, 0, 0, 0, 19, 11, 9, 0, 20, 0, 0, 0, 21, 12, 0, 9, 22, 0, 10, 0, 23, 13, 0, 0, 24, 0, 0, 0, 25, 14, 11, 10, 26, 0, 0, 0, 10
Offset: 1
Triangle begins:
2;
3;
4;
5, 4;
6, 0;
7, 5;
8, 0;
9, 6;
10, 0, 6;
11, 7, 0;
12, 0, 0;
13, 8, 7;
14, 0, 0;
15, 9, 0;
16, 0, 8;
17, 10, 0, 8;
18, 0, 0, 0;
19, 11, 9, 0;
20, 0, 0, 0;
21, 12, 0, 9;
22, 0, 10, 0;
23, 13, 0, 0;
24, 0, 0, 0;
25, 14, 11, 10;
26, 0, 0, 0, 10;
27, 15, 0, 0, 0;
28, 0, 12, 0, 0;
29, 16, 0, 11, 0;
30, 0, 0, 0, 0;
31, 17, 13, 0, 11;
...
A349005
a(n) = Sum_{d|n, d^2>=n} 1+d+n/d.
Original entry on oeis.org
3, 4, 5, 11, 7, 14, 9, 17, 18, 20, 13, 31, 15, 26, 26, 38, 19, 42, 21, 45, 34, 38, 25, 64, 38, 44, 42, 59, 31, 76, 33, 66, 50, 56, 50, 102, 39, 62, 58, 94, 43, 100, 45, 87, 81, 74, 49, 129, 66, 96, 74, 101, 55, 124, 74, 124, 82, 92, 61, 174, 63, 98, 107, 139, 86, 148
Offset: 1
-
a[n_] := DivisorSum[n, 1 + # + n/# &, #^2 >= n &]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
-
a(n) = sumdiv(n, d, if (d^2>=n, d+1+n/d));
Comments