cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A117004 a(n) = sigma(n) - A079667(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 6, 5, 6, 2, 12, 2, 6, 8, 10, 2, 12, 2, 14, 8, 6, 2, 20, 7, 6, 8, 14, 2, 22, 2, 14, 8, 6, 12, 26, 2, 6, 8, 24, 2, 24, 2, 14, 18, 6, 2, 32, 9, 16, 8, 14, 2, 24, 12, 28, 8, 6, 2, 42, 2, 6, 22, 22, 12, 24, 2, 14, 8, 30, 2, 48, 2, 6, 18, 14, 16, 24, 2, 40, 17, 6, 2, 46, 12, 6, 8, 30
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

Crossrefs

Programs

  • Mathematica
    Table[Total[Min[#,n/#]&/@Divisors[n]],{n,90}] (* Harvey P. Dale, Jan 01 2020 *)
  • PARI
    {a(n) = sumdiv(n, d, min(d, n/d))} \\ Seiichi Manyama, Dec 27 2017

Formula

G.f.: sum(n>=1, n*x^(n^2)*(1+x^n)/(1-x^n) ). [Joerg Arndt, Jan 30 2011]
a(n) = Sum_{d|n} min(d, n/d). - Seiichi Manyama, Dec 27 2017

A117003 a(n) = sigma(n) + A079667(n).

Original entry on oeis.org

1, 4, 6, 10, 10, 18, 14, 24, 21, 30, 22, 44, 26, 42, 40, 52, 34, 66, 38, 70, 56, 66, 46, 100, 55, 78, 72, 98, 58, 122, 62, 112, 88, 102, 84, 156, 74, 114, 104, 156, 82, 168, 86, 154, 138, 138, 94, 216, 105, 170, 136, 182, 106, 216, 132, 212, 152, 174, 118, 294, 122, 186, 186
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Max[#, n/#] &]; Array[a, 100] (* Amiram Eldar, Jan 12 2025 *)
  • PARI
    {a(n) = sumdiv(n, d, max(d, n/d))} \\ Seiichi Manyama, Dec 27 2017

Formula

a(n) = Sum_{d|n} max(d, n/d). - Seiichi Manyama, Dec 27 2017
a(n) = Sum_{k in Z} H(4*n-k^2) where H() is the Hurwitz class number. - Seiichi Manyama, Jan 06 2018
G.f.: Sum_{n >= 1} x^(n^2)*(n + 2*x^n - n*x^(2*n))/(1 - x^n)^2 = x + 4*x^2 + 6*x^3 + 10*x^4 + 10*x^5 + .... Cf. A117004. - Peter Bala, Jan 19 2021
Sum_{k=1..n} a(k) ~ zeta(2) * n^2. - Amiram Eldar, Jan 12 2025

A117002 a(n) = sigma(n) + 3*A079667(n).

Original entry on oeis.org

1, 6, 10, 16, 18, 30, 26, 42, 37, 54, 42, 76, 50, 78, 72, 94, 66, 120, 74, 126, 104, 126, 90, 180, 103, 150, 136, 182, 114, 222, 122, 210, 168, 198, 156, 286, 146, 222, 200, 288, 162, 312, 170, 294, 258, 270, 186, 400, 201, 324, 264, 350, 210, 408, 252, 396, 296, 342, 234
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1,n]+3DivisorSum[n,Abs[n/#-#]&,#<=Sqrt[n]&],{n, 59}] (* James C. McMahon, Aug 23 2024 *)

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A274230 Number of holes in a sheet of paper when you fold it n times and cut off the four corners.

Original entry on oeis.org

0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, 1953, 3969, 8001, 16129, 32385, 65025, 130305, 261121, 522753, 1046529, 2094081, 4190209, 8382465, 16769025, 33542145, 67092481, 134193153, 268402689, 536821761, 1073676289, 2147385345
Offset: 0

Views

Author

Philippe Gibone, Jun 15 2016

Keywords

Comments

The folds are always made so the longer side becomes the shorter side.
We could have counted not only the holes but also all the notches: 4, 6, 9, 15, 25, 45, 81, 153, 289, ... which has the formula a(n) = (2^ceiling(n/2) + 1) * (2^floor(n/2) + 1) and appears to match the sequence A183978. - Philippe Gibone, Jul 06 2016
The same sequence (0,0,1,3,9,21,49,...) turns up when you start with an isosceles right triangular piece of paper and repeatedly fold it in half, snipping corners as you go. Is there an easy way to see why the two questions have the same answer? - James Propp, Jul 05 2016
Reply from Tom Karzes, Jul 05 2016: (Start)
This case seems a little more complicated than the rectangular case, since with the triangle you alternate between horizontal/vertical folds vs. diagonal folds, and the resulting fold pattern is more complex, but I think the basic argument is essentially the same.
Note that with the triangle, the first hole doesn't appear until after you've made 3 folds, so if you start counting at zero folds, you have three leading zeros in the sequence: 0,0,0,1,3,9,21,... (End)
Also the number of subsets of {1,2,...,n} that contain both even and odd numbers. For example, a(3)=3 and the 3 subsets are {1,2}, {2,3}, {1,2,3}; a(4)=9 and the 9 subsets are {1,2}, {1,4}, {2,3}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}. (See comments in A052551 for the number of subsets of {1,2,...,n} that contain only odd and even numbers.) - Enrique Navarrete, Mar 26 2018
Also the number of integer compositions of n + 1 with an odd part other than the first or last. The complementary compositions are counted by A052955(n>0) = A027383(n) + 1. - Gus Wiseman, Feb 05 2022
Also the number of unit squares in the (n+1)-st iteration in the version of the dragon curve where the rotation directions alternate, so that any clockwise rotation is followed by a counterclockwise rotation, and vice versa (see image link below). - Talmon Silver, May 09 2023

Crossrefs

See A274626, A274627 for the three- and higher-dimensional analogs.
This is the main diagonal of A274635.
Counting fold lines instead of holes gives A027383.
Bisections are A060867 (even) and A134057 (odd).

Programs

Formula

u(0) = 0; v(0) = 0; u(n+1) = v(n); v(n+1) = 2u(n) + 1; a(n) = u(n)*v(n).
a(n) = (2^ceiling(n/2) - 1)*(2^floor(n/2) - 1).
Proof from Tom Karzes, Jul 05 2016: (Start)
Let r be the number of times you fold along one axis and s be the number of times you fold along the other axis. So r is ceiling(n/2) and s is floor(n/2), where n is the total number of folds.
When unfolded, the resulting paper has been divided into a grid of (2^r) by (2^s) rectangles. The interior grid lines will have diamond-shaped holes where they intersect (assuming diagonal cuts).
There are (2^r-1) internal grid lines along one axis and (2^s-1) along the other. The total number of internal grid line intersections is therefore (2^r-1)*(2^s-1), or (2^ceiling(n/2)-1)*(2^floor(n/2)-1) as claimed. (End)
From Colin Barker, Jun 22 2016, revised by N. J. A. Sloane, Jul 05 2016: (Start)
It follows that:
a(n) = (2^(n/2)-1)^2 for n even, a(n) = 2^n+1-3*2^((n-1)/2) for n odd.
a(n) = 3*a(n-1)-6*a(n-3)+4*a(n-4) for n>3.
G.f.: x^2 / ((1-x)*(1-2*x)*(1-2*x^2)).
a(n) = (1+2^n-2^((n-3)/2)*(3-3*(-1)^n+2*sqrt(2)+2*(-1)^n*sqrt(2))). (End)
a(n) = A000225(n) - 2*A052955(n-2) for n > 1. - Yuchun Ji, Nov 19 2018
a(n) = A079667(2^(n-1)) for n >= 1. - J. M. Bergot, Jan 18 2021
a(n) = 2^(n-1) - A052955(n) = 2^(n-1) - A027383(n) - 1. - Gus Wiseman, Jan 29 2022
E.g.f.: cosh(x) + cosh(2*x) - 2*cosh(sqrt(2)*x) + sinh(x) + sinh(2*x) - 3*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, Apr 06 2022

A368312 Irregular triangle read by rows where row n lists the factor differences of n.

Original entry on oeis.org

0, 1, 2, 0, 3, 4, 1, 5, 6, 2, 7, 0, 8, 3, 9, 10, 1, 4, 11, 12, 5, 13, 2, 14, 0, 6, 15, 16, 3, 7, 17, 18, 1, 8, 19, 4, 20, 9, 21, 22, 2, 5, 10, 23, 0, 24, 11, 25, 6, 26, 3, 12, 27, 28, 1, 7, 13, 29, 30, 4, 14, 31, 8, 32, 15, 33, 2, 34, 0, 5, 9, 16, 35, 36, 17, 37
Offset: 1

Views

Author

Kevin Ryde, Dec 21 2023

Keywords

Comments

Factor differences of n are all abs(p-q) where n = p*q, for positive integers p,q.
p is each divisor of n which is >= sqrt(n), in ascending order (A161908), and the resulting differences p-q are distinct and in ascending order.
Row n has length A038548(n).
Row n begins with smallest difference T(n,1) = A056737(n) and this is 0 iff n is a perfect square.
Row n ends with n-1 and this is the sole entry iff n is 1 or prime.

Examples

			Triangle begins:
       k=1
  n=1:   0
  n=2:   1
  n=3:   2
  n=4:   0, 3
  n=5:   4
  n=6:   1, 5
  n=7:   6
  n=8:   2, 7
  n=9:   0, 8
		

Crossrefs

Cf. A038548 (row lengths), A079667 (row sums), A068333 (row products).
Cf. A056737 (column k=1), A161908.
Cf. A335572 (factor sums).

Programs

  • PARI
    row(n) = my(v=divisors(n)); (v-Vecrev(v))[#v\2+1..#v];

Formula

T(n,k) = d - n/d where d = A161908(n,k).

A116589 a(n) = Sum{sqrt(n) < i <= n} i - Sum{1 <= i < sqrt(n)} i.

Original entry on oeis.org

0, 1, 4, 6, 9, 15, 22, 30, 36, 43, 54, 66, 79, 93, 108, 120, 133, 151, 170, 190, 211, 233, 256, 280, 300, 321, 348, 376, 405, 435, 466, 498, 531, 565, 600, 630, 661, 699, 738, 778, 819, 861, 904, 948, 993, 1039, 1086, 1134, 1176, 1219, 1270, 1322, 1375, 1429, 1484, 1540
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

Comments

Lim_{n->oo} a(n)/n^2 = 1/2. - Stefan Steinerberger, Apr 16 2006

Crossrefs

Cf. A079667.

Programs

  • Mathematica
    Table[Sum[i, {i, Ceiling[Sqrt[n]], n}]-Sum[i,{i,1,Floor[Sqrt[n]]}], {n, 1, 10}] (* Stefan Steinerberger, Apr 16 2006 *)

A357259 a(n) is the number of 2 X 2 Euclid-reduced matrices having determinant n.

Original entry on oeis.org

1, 2, 3, 5, 5, 8, 7, 11, 10, 14, 11, 19, 13, 20, 18, 24, 17, 30, 19, 31, 26, 32, 23, 44, 26, 38, 34, 45, 29, 54, 31, 52, 42, 50, 38, 70, 37, 56, 50, 70, 41, 76, 43, 73, 63, 68, 47, 97, 50, 80, 66, 87, 53, 100, 62, 96, 74, 86, 59, 132, 61, 92, 85, 109, 74, 124, 67, 115, 90, 118
Offset: 1

Views

Author

Michel Marcus, Sep 21 2022

Keywords

Comments

See Bacher link for the definition of Euclid-reduced.

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(max(d-n/d, 1),d in divisors(n)), n=1..80); # Ridouane Oudra, Oct 30 2023
  • Mathematica
    a[n_] := DivisorSum[n, # + 1 - n/# &, #^2 >= n &]; Array[a, 100] (* Amiram Eldar, Sep 21 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (d^2 >= n, d+1-n/d));

Formula

a(n) = Sum_{d|n, d^2>=n} d+1-n/d.
From Ridouane Oudra, Oct 30 2023: (Start)
a(n) = Sum_{d|n} max(d-n/d, 1).
a(n) = ceiling(tau(n)/2) + (1/2)*Sum_{d|n} abs(d-n/d).
a(n) = A038548(n) + A079667(n). (End)
G.f.: Sum_{k>=1} x^(k^2) / (1 - x^k)^2. - Ilya Gutkovskiy, May 17 2024

A321297 a(n) is the sum of proper divisors of n that are >= sqrt(n) minus the sum of the divisors that are greater than 1 and less than sqrt(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 2, 3, 3, 0, 5, 0, 5, 2, 10, 0, 10, 0, 9, 4, 9, 0, 17, 5, 11, 6, 15, 0, 21, 0, 18, 8, 15, 2, 36, 0, 17, 10, 27, 0, 31, 0, 27, 16, 21, 0, 45, 7, 28, 14, 33, 0, 43, 6, 37, 16, 27, 0, 67, 0, 29, 20, 50, 8, 55, 0, 45, 20, 45, 0, 76, 0, 35, 32
Offset: 1

Views

Author

Nathaniel J. Strout, Nov 02 2018

Keywords

Crossrefs

Cf. A000203 (sigma), A070038, A079667.

Programs

  • Mathematica
    Array[Function[{d, s}, 1 + Subtract @@ (Total /@ Reverse@ TakeDrop[d, LengthWhile[d, # < s &]])] @@ {Most@ Divisors[#], Sqrt@ #} &, 74, 2] (* Michael De Vlieger, Nov 25 2018 *)
  • PARI
    a(n)=sumdiv(n, d, if(d>1&&d=n/d, d, -d)))

Formula

a(p) = 0, for primes p.
a(n) = 2*A070038(n) - sigma(n) - n + 1 for n > 1. - Andrew Howroyd, Nov 25 2018

A337162 Numbers m such that Sum_{d|m: 1<=d<=sqrt(m)} m/d-d is a multiple of m.

Original entry on oeis.org

1, 6, 840, 3420
Offset: 1

Views

Author

Devansh Singh, Jan 28 2021

Keywords

Comments

Integers m such that A079667(m) is a multiple of m.
Sum_{d|m: 1<=d<=sqrt(m)} (m/d)-d = 0 only when m=1 and Sum_{d|m: 1<=d<=sqrt(m)} (m/d)-d = m only when m=6.
If m is q+1-perfect and 2*Sum_{d|m: 1<=d<=sqrt(m)} d=m then Sum_{d|m: 1<=d<=sqrt(m)} (m/d)-d = m*q or if m is member of this sequence i.e. Sum_{d|m: 1<=d<=sqrt(m)} (m/d)-d = m*q and 2*Sum_{d|m: 1<=d<=sqrt(m)} d=m then m is q+1-perfect.
Does there exist any m apart from 6 which is q+1-perfect, q>=2 and satisfies 2*Sum_{d|m: 1<=d<=sqrt(m)} d=m? Because if it exists then m is member of this sequence.

Crossrefs

Cf. A079667, A007691 (in comment).

Programs

  • Mathematica
    Select[Range[10^5], Function[m, Mod[DivisorSum[m, Abs[m/# - #] &, # <= Sqrt[m] &], m] == 0]] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    isok(m) = !(sumdiv(m, d, if (d^2 <= m, m/d-d)) % m); \\ Michel Marcus, Jan 28 2021
Showing 1-10 of 10 results.