cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060884 a(n) = n^4 - n^3 + n^2 - n + 1.

Original entry on oeis.org

1, 1, 11, 61, 205, 521, 1111, 2101, 3641, 5905, 9091, 13421, 19141, 26521, 35855, 47461, 61681, 78881, 99451, 123805, 152381, 185641, 224071, 268181, 318505, 375601, 440051, 512461, 593461, 683705, 783871, 894661, 1016801, 1151041, 1298155, 1458941, 1634221
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_10(n), where Phi_k is the k-th cyclotomic polynomial.
Number of walks of length 5 between any two distinct nodes of the complete graph K_{n+1} (n>=1). Example: a(1)=1 because in the complete graph AB we have only one walk of length 5 between A and B: ABABAB. - Emeric Deutsch, Apr 01 2004
t^4-t^3+t^2-t+1 is the Alexander polynomial (with negative powers cleared) of the cinquefoil knot (torus knot T(5,2)). The associated Seifert matrix S is [[ -1, -1, 0, -1], [ 0, -1, 0, 0], [ -1, -1, -1, -1], [ 0, -1, 0, -1]]. a(n) = det(transpose(S)-n*S). Cf. A084849. - Peter Bala, Mar 14 2012
For odd n, a(n) * (n+1) / 2 also represents the first integer in a sum of n^5 consecutive integers that equals n^10. - Patrick J. McNab, Dec 26 2016

Crossrefs

Programs

  • Maple
    A060884 := proc(n)
            numtheory[cyclotomic](10,n) ;
    end proc:
    seq(A060884(n),n=0..20) ; # R. J. Mathar, Feb 07 2014
  • Mathematica
    Table[1 + Fold[(-1)^(#2)*n^(#2) + #1 &, Range[0, 4]], {n, 0, 33}] (* or *)
    CoefficientList[Series[(1 - 4 x + 16 x^2 + 6 x^3 + 5 x^4)/(1 - x)^5, {x, 0, 33}], x] (* Michael De Vlieger, Dec 26 2016 *)
    Table[n^4-n^3+n^2-n+1,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,1,11,61,205},40] (* Harvey P. Dale, Sep 08 2018 *)
  • PARI
    a(n) = { n^4 - n^3 + n^2 - n + 1 } \\ Harry J. Smith, Jul 13 2009

Formula

G.f.: (1-4*x+16*x^2+6*x^3+5*x^4)/(1-x)^5. - Emeric Deutsch, Apr 01 2004
E.g.f.: exp(x)*(1 + 5*x^2 + 5*x^3 + x^4). - Stefano Spezia, Apr 22 2023