A060925 a(n) = 2*a(n-1) + 3*a(n-2), a(0) = 1, a(1) = 4.
1, 4, 11, 34, 101, 304, 911, 2734, 8201, 24604, 73811, 221434, 664301, 1992904, 5978711, 17936134, 53808401, 161425204, 484275611, 1452826834, 4358480501, 13075441504, 39226324511, 117678973534, 353036920601
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (2,3).
Programs
-
Magma
[(5*3^n - (-1)^n)/4: n in [0..30]]; // G. C. Greubel, Apr 06 2021
-
Maple
A060925:= n-> (5*3^n - (-1)^n)/4; seq(A060925(n), n=0..30); # G. C. Greubel, Apr 06 2021
-
Mathematica
f[n_]:=3/(n+2);x=2;Table[x=f[x];Denominator[x],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2010 *) LinearRecurrence[{2,3},{1,4},30] (* Harvey P. Dale, Mar 07 2014 *)
-
PARI
{a(n) = (5*3^n - (-1)^n)/4}; vector(30, n, a(n-1)) \\ Harry J. Smith, Jul 19 2009 \\ modified by G. C. Greubel, Apr 06 2021
-
Sage
[(5*3^n - (-1)^n)/4 for n in (0..30)] # G. C. Greubel, Apr 06 2021
Formula
Row sums of Lucas convolution triangle A060922.
Inverse binomial transform of A003947. - Philippe Deléham, Jul 23 2005
a(n) = (5*3^n - (-1)^n)/4.
G.f.: (1+2*x)/(1 - 2*x - 3*x^2).
a(2n) = 3*a(2n-1) - 1; a(2n+1) = 3*a(2n) + 1. - Philippe Deléham, Jul 23 2005
Binomial transform is A003947. - Paul Barry, May 19 2003
E.g.f.: (-exp(-x) + 5*exp(3*x))/4. - G. C. Greubel, Apr 06 2021
Extensions
Recurrence, now used as definition, from Philippe Deléham, Jul 23 2005
Entry revised by N. J. A. Sloane, Sep 10 2006
Comments