cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060992 a(n) = Sum_{gcd(i,j) | 0 < i <= j < n and i+j = n}.

Original entry on oeis.org

0, 1, 1, 3, 2, 6, 3, 8, 6, 11, 5, 17, 6, 16, 15, 20, 8, 27, 9, 31, 22, 26, 11, 44, 20, 31, 27, 45, 14, 60, 15, 48, 36, 41, 41, 75, 18, 46, 43, 80, 20, 87, 21, 73, 72, 56, 23, 108, 42, 85, 57, 87, 26, 108, 67, 116, 64, 71, 29, 165, 30, 76
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 14 2002

Keywords

Examples

			a(12) = gcd(1,11) + gcd(2,10) + gcd(3,9) + gcd(4,8) + gcd(5,7) + gcd(6,6) = 1 + 2 + 3 + 4 + 1 + 6 = 17;
a(13) = gcd(1,12) + gcd(2,11) + gcd(3,10) + gcd(4,9) + gcd(5,8) + gcd(6,7) = 1 + 1 + 1 + 1 + 1 + 1 = 6.
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    A:= Vector(N):
    for d from 1 to N do
      c:= floor(d/2);
      for n from d to N by d do
        A[n]:= A[n]+c*numtheory:-phi(n/d)
      od
    od:
    seq(A[i],i=1..N); # Robert Israel, May 11 2018
  • Mathematica
    Table[Sum[GCD[n - i, i], {i, Floor[n/2]}], {n, 100}] (* Wesley Ivan Hurt, Nov 12 2017 *)
  • PARI
    a(n) = sumdiv(n, d, (d\2)*eulerphi(n/d)); \\ Michel Marcus, May 11 2018

Formula

a(n) = Sum_{d divides n} floor(d/2)*phi(n/d). a(p) = (p-1)/2 for an odd prime p. - Vladeta Jovovic, Dec 21 2004
a(n) = Sum_{i=1..floor(n/2)} gcd(n-i,i). - Wesley Ivan Hurt, Nov 12 2017
G.f.: Sum_{k>=1} phi(k)*x^(2*k)/((1 + x^k)*(1 - x^k)^2). - Ilya Gutkovskiy, Oct 24 2018
a(n) = (A018804(n) - A109043(n))/2. - Ridouane Oudra, May 31 2025