cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060999 Nearest integer to (n+1)^3/9.

Original entry on oeis.org

0, 1, 3, 7, 14, 24, 38, 57, 81, 111, 148, 192, 244, 305, 375, 455, 546, 648, 762, 889, 1029, 1183, 1352, 1536, 1736, 1953, 2187, 2439, 2710, 3000, 3310, 3641, 3993, 4367, 4764, 5184, 5628, 6097, 6591, 7111, 7658, 8232, 8834, 9465, 10125, 10815, 11536
Offset: 0

Views

Author

N. J. A. Sloane, May 14 2001

Keywords

Comments

a(n) is also the number of ways to award 4n+5 bonuses to 4 teams: first, second, third and fourth satisfying 1st > 2nd > 3rd > 4th and 1st + 4th < 2nd + 3rd. - Hoang Xuan Thanh, Jun 03 2025

Examples

			x + 3*x^2 + 7*x^3 + 14*x^4 + 24*x^5 + 38*x^6 + 57*x^7 + 81*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n+1)^3/9+1/2],{n,0,50}] (* Harvey P. Dale, Jan 20 2013 *) (* or *)
    LinearRecurrence[{3, -3, 2, -3, 3, -1}, {0, 1, 3, 7, 14, 24}, 47] (* Georg Fischer, Oct 13 2020 *)
  • PARI
    a(n) = { round((n + 1)^3/9) } \\ Harry J. Smith, Jul 16 2009
    
  • PARI
    {a(n) = n++; (n^3 - kronecker(-3, n)) / 9} /* Michael Somos, Aug 12 2009 */

Formula

G.f.: x*(1+x^2)/((1-x)^3*(1-x^3)).
G.f.: x * (1 - x^4) / ((1 - x)^3 * (1 - x^2) * (1 - x^3)).
G.f.: ( (1 + 4*x + x^2) / (1 - x)^4 - 1 / (1 + x + x^2) ) / 9.
From Michael Somos, Aug 12 2009: (Start)
Euler transform of length 4 sequence [ 3, 1, 1, -1].
a(-2-n) = -a(n). (End)
E.g.f.: exp(-x/2)*(3*exp(3*x/2)*(1 + 7*x + 6*x^2 + x^3) - 3*cos(sqrt(3)*x/2)+ sqrt(3)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Sep 24 2024
From Hoang Xuan Thanh, Jun 03 2025: (Start)
a(n) = floor(((n+1)^3+1)/9).
For n>0: a(n) = A266769(2n-2). (End)