cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030515 Numbers with exactly 6 divisors.

Original entry on oeis.org

12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1

Views

Author

Keywords

Comments

Numbers which are either the 5th power of a prime or the product of a prime and the square of a different prime, i.e., numbers which are in A050997 (5th powers of primes) or A054753. - Henry Bottomley, Apr 25 2000
Also numbers which are the square root of the product of their proper divisors. - Amarnath Murthy, Apr 21 2001
Such numbers are multiplicatively 3-perfect (i.e., the product of divisors of a(n) equals a(n)^3). - Lekraj Beedassy, Jul 13 2005
Since A119479(6)=5, there are never more than 5 consecutive terms. Quintuples of consecutive terms start at 10093613546512321, 14414905793929921, 266667848769941521, ... (A141621). No such quintuple contains a term of the form p^5. - Ivan Neretin, Feb 08 2016

References

  • Amarnath Murthy, A note on the Smarandache Divisor sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

Crossrefs

Cf. A061117.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, {2,seq(i,i=3..floor(N/4))}):
    S:= select(`<=`,{seq(p^5, p = Primes),seq(seq(p*q^2, p=Primes minus {q}),q=Primes)},N):
    sort(convert(S,list)); # Robert Israel, Feb 10 2016
  • Mathematica
    f[n_]:=Length[Divisors[n]]==6; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *)
    Select[Range[500],DivisorSigma[0,#]==6&] (* Harvey P. Dale, Oct 02 2014 *)
  • PARI
    is(n)=numdiv(n)==6 \\ Charles R Greathouse IV, Jan 23 2014
    
  • Python
    from sympy import divisor_count
    def ok(n): return divisor_count(n) == 6
    print([k for k in range(429) if ok(k)]) # Michael S. Branicky, Dec 18 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A030515(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**2) for p in primerange(isqrt(x)+1))+primepi(integer_nthroot(x,3)[0])-primepi(integer_nthroot(x,5)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Union of A050997 and A054753. - Lekraj Beedassy, Jul 13 2005
A000005(a(n))=6. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Definition clarified by Jonathan Sondow, Jan 23 2014

A061112 a(n) is the minimum number of divisors for any composite between prime(n) and prime(n+1).

Original entry on oeis.org

3, 4, 3, 6, 4, 6, 4, 3, 8, 4, 4, 8, 4, 3, 4, 12, 4, 4, 12, 4, 4, 4, 4, 6, 8, 4, 12, 4, 3, 4, 4, 8, 4, 12, 4, 4, 4, 3, 4, 18, 4, 14, 4, 12, 4, 4, 4, 12, 8, 4, 20, 4, 4, 4, 4, 16, 4, 4, 8, 3, 4, 4, 16, 4, 4, 4, 4, 12, 8, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 24, 4, 20, 4, 8, 4, 4, 4, 16, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 2

Views

Author

Labos Elemer, May 29 2001

Keywords

Examples

			prime(30)=113 is followed by 13 composites; their numbers of divisors are {8, 4, 6, 6, 4, 4, 16, 3, 4, 4, 6, 4, 12}. The smallest is 3, so a(30)=3. [corrected by _Jon E. Schoenfield_, Sep 20 2022]
		

Crossrefs

Programs

  • Mathematica
    Array[Min@ DivisorSigma[0, Range[#1 + 1, #2 - 1]] & @@ Prime[# + {0, 1}] &, 95, 2] (* Michael De Vlieger, Aug 10 2023 *)
  • PARI
    { n=-1; q=3; m=10^6; forprime (p=5, prime(1003), a=m; for (i=q + 1, p - 1, a=min(numdiv(i), a)); q=p; write("b061112.txt", n++, " ", a) ) } \\ Harry J. Smith, Jul 19 2009

Formula

a(n) = Min_{c=prime(n)+1..prime(n+1)-1} tau(c) where tau(c) is the number of divisors of c.
Showing 1-2 of 2 results.