cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061150 a(n) = Sum_{d|n} d*prime(d).

Original entry on oeis.org

2, 8, 17, 36, 57, 101, 121, 188, 224, 353, 343, 573, 535, 729, 777, 1036, 1005, 1406, 1275, 1801, 1669, 2087, 1911, 2861, 2482, 3167, 3005, 3753, 3163, 4541, 3939, 5228, 4879, 5737, 5391, 7314, 5811, 7475, 7063, 8873, 7341, 9957, 8215, 10607, 9849
Offset: 1

Views

Author

Vladeta Jovovic, Apr 16 2001

Keywords

Examples

			a(4)=36 because the divisors of 4 are 1,2,4 and 1*p(1) + 2*p(2) + 4*p(4) = 1*2 + 2*3 + 4*7 = 36.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local div: div:=divisors(n): sum(div[j]*ithprime(div[j]),j=1..tau(n)) end: seq(a(n),n=1..55); # Emeric Deutsch, Jan 20 2007
  • PARI
    a(n) = sumdiv(n, d, d*prime(d)); \\ Michel Marcus, Jun 24 2018

Formula

Equals M * V, where M = A127093 as an infinite lower triangular matrix and V = A000040, the sequence of primes as a vector. E.g., a(4) = 36 = 1*2 + 2*3 + 4*7, where (1, 2, 0, 4) = row 4 of A127093 and 2, 3 and 7 are p(1), p(2), p(4). - Gary W. Adamson, Jan 11 2007
L.g.f.: log(Product_{k>=1} 1/(1 - x^k)^prime(k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017

Extensions

Edited by N. J. A. Sloane, May 04 2007