cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A061152 Expansion of Product_{n>=1} (1+x^n)^prime(n).

Original entry on oeis.org

1, 2, 4, 11, 23, 51, 107, 216, 430, 839, 1614, 3046, 5684, 10465, 19046, 34321, 61225, 108245, 189779, 330093, 569916, 977139, 1664304, 2817039, 4740000, 7930740, 13198108, 21851556, 36001483, 59035979, 96373100, 156644241, 253550911
Offset: 0

Views

Author

Vladeta Jovovic, Apr 16 2001

Keywords

Crossrefs

Formula

a(n) = (1/n) * Sum_{k=1..n} a(n-k)*b(k), k>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(k/d+1)*d*prime(d).

A007441 1 + Sum_{n>=1} a_n x^n = Product_{n>=1} (1-x^n)^prime(n).

Original entry on oeis.org

1, -2, -2, 1, 3, 7, 5, 6, -10, -27, -50, -42, -30, 41, 148, 241, 345, 303, 167, -275, -858, -1685, -2342, -2813, -2316, -536, 2914, 8228, 14531, 20955, 24370, 22393, 10265, -13839, -53386, -104364, -161593, -209463, -228141, -188750, -62023, 177547, 541310, 1009998, 1527972, 1976120, 2189974
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), k>0, a(0)=1, b(k)=-Sum_{d|k} d*prime(d), cf. A061150.

Extensions

Better description from Vladeta Jovovic, Apr 16 2001

A061151 1 + Sum_{n>=1} a_n x^n = 1/Product_{n>=1} (1+x^n)^prime(n).

Original entry on oeis.org

1, -2, 0, -3, 5, -3, 14, -4, 25, -32, 16, -88, 18, -155, 108, -153, 393, -88, 855, -160, 1255, -974, 1122, -3172, 370, -6794, 383, -10017, 5004, -9460, 19380, -2635, 45790, 5008, 76263, -7353, 87597, -77967, 48886, -244397, -45016, -500016, -115318, -734277, 56213, -710603, 810177, -161662, 2432173, 910752, 4767086
Offset: 0

Views

Author

Vladeta Jovovic, Apr 16 2001

Keywords

Crossrefs

Formula

a(n) = (1/n) * Sum_{k=1..n} a(n-k)*b(k), k>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(k/d)*d*prime(d).

A318367 a(n) = Sum_{d|n} (-1)^(n/d+1)*d*prime(d).

Original entry on oeis.org

2, 4, 17, 20, 57, 67, 121, 116, 224, 239, 343, 371, 535, 487, 777, 660, 1005, 958, 1275, 1095, 1669, 1401, 1911, 1715, 2482, 2097, 3005, 2295, 3163, 2987, 3939, 3156, 4879, 3727, 5391, 4502, 5811, 4925, 7063, 5271, 7341, 6619, 8215, 6433, 9849, 7249, 9919, 8691, 11244, 9264
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; add((-1)^(n/d+1)*d*ithprime(d), d = numtheory:-divisors(n)); end proc:map(f, [$1..100]); # Robert Israel, Aug 01 2023
  • Mathematica
    Table[Sum[(-1)^(n/d + 1) d Prime[d], {d, Divisors[n]}], {n, 50}]
    nmax = 50; Rest[CoefficientList[Series[Sum[k Prime[k] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 50; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^Prime[k], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*d*prime(d)); \\ Michel Marcus, Aug 25 2018

Formula

G.f.: Sum_{k>=1} k*prime(k)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^prime(k)) = Sum_{n>=1} a(n)*x^n/n.

A333558 a(n) = Sum_{d|n} phi(d) * prime(d).

Original entry on oeis.org

2, 5, 12, 19, 46, 41, 104, 95, 150, 165, 312, 203, 494, 365, 432, 519, 946, 545, 1208, 747, 990, 1105, 1828, 991, 1986, 1709, 2004, 1663, 3054, 1481, 3812, 2615, 3062, 3173, 3724, 2519, 5654, 4145, 4512, 3591, 7162, 3449, 8024, 4979, 5298, 6209, 9708, 4983, 9638, 6685
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] Prime[d], {d, Divisors[n]}], {n, 1, 50}]
    Table[Sum[Prime[n/GCD[n, k]], {k, 1, n}], {n, 1, 50}]
  • PARI
    a(n) = sumdiv(n, d, prime(d)*eulerphi(d)); \\ Michel Marcus, Mar 27 2020

Formula

G.f.: Sum_{k>=1} phi(k) * prime(k) * x^k / (1 - x^k).
a(n) = Sum_{k=1..n} prime(n/gcd(n,k)).
a(n) = Sum_{k=1..n} prime(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021

A372620 Expansion of Sum_{k>=1} k * prime(k) * x^prime(k) / (1 - x^prime(k)).

Original entry on oeis.org

0, 2, 6, 2, 15, 8, 28, 2, 6, 17, 55, 8, 78, 30, 21, 2, 119, 8, 152, 17, 34, 57, 207, 8, 15, 80, 6, 30, 290, 23, 341, 2, 61, 121, 43, 8, 444, 154, 84, 17, 533, 36, 602, 57, 21, 209, 705, 8, 28, 17, 125, 80, 848, 8, 70, 30, 158, 292, 1003, 23, 1098, 343, 34, 2, 93
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2024

Keywords

Examples

			a(60) = a(2^2 * 3 * 5) = a(prime(1)^2 * prime(2) * prime(3)) = 1 * 2 + 2 * 3 + 3 * 5 = 23.
		

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[k Prime[k] x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Plus @@ (PrimePi[#[[1]]] #[[1]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 65}]

Formula

L.g.f.: -log( Product_{k>=1} (1 - x^prime(k))^k ).
If n = Product (p_j^k_j) then a(n) = Sum (pi(p_j) * p_j), where pi = A000720.
Showing 1-6 of 6 results.