A061162 a(n) = (6n)!n!/((3n)!(2n)!^2).
1, 30, 2310, 204204, 19122246, 1848483780, 182327718300, 18236779032600, 1842826521244230, 187679234340049620, 19232182592635611060, 1980665038436368775400, 204826599735691440534300, 21255328931341321610645544, 2212241139727064219063537016
Offset: 0
References
- M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..100
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2, (2009) 422-444.
- M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22, p. 11.
- W. Mlotkowski and Karol A. Penson, Probability distributions with binomial moments, arXiv preprint arXiv:1309.0595 [math.PR], 2013.
- F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
Crossrefs
Programs
-
Maple
A061162 := n->(6*n)!*n!/((3*n)!*(2*n)!^2);
-
Mathematica
a[n_] := 16^n Gamma[3 n + 1/2]/(Gamma[n + 1/2] Gamma[2 n + 1]); Table[a[n], {n, 0, 14}] (* Peter Luschny, Mar 01 2018 *)
-
PARI
{ for (n=0, 100, write("b061162.txt", n, " ", (6*n)!*n!/((3*n)!*(2*n)!^2)) ) } \\ Harry J. Smith, Jul 18 2009
Formula
a(n) ~ 1/2*Pi^(-1/2)*n^(-1/2)*2^(2*n)*3^(3*n)*{1 - 1/72*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002
n*(2*n-1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - R. J. Mathar, Oct 26 2014
From Peter Bala, Aug 21 2016: (Start)
a(n) = Sum_{k = 0..2*n} binomial(6*n, k)*binomial(4*n - k - 1, 2*n - k).
a(n) = Sum_{k = 0..n} binomial(8*n, 2*n - 2*k)*binomial(2*n + k - 1, k).
O.g.f. A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^6/(1 - x)^2. Cf. A091496 and A262732. It follows that the o.g.f. A(x) for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
Let G(x) = 1/x * series reversion( x*(1 - x)/(1 + x)^3 ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + ..., essentially the o.g.f. for A007297. Then A(x^2) equals the even part of 1 + x*(d/dx log(G(x))).
exp(Sum_{n >= 1} a(n)*x^n/n) = F(x), where F(x) = 1 + 30*x + 1605*x^2 + 107218*x^3 + 8043114*x^4 + 647773116*x^5 + 54730094637*x^6 + ... has integer coefficients since F(x^2) = G(x)*G(-x). Furthermore, F(x)^(1/6) = 1 + 5*x + 205*x^2 + 12328*x^3 + 874444*x^4 + 68022261*x^5 + 5613007167*x^6 + ... appears to have all integer coefficients. (End)
a(n) is the n-th moment of the positive weight function w(x) on x = (0,108), i.e.: a(n) = Integral_{x=0..108} x^n*w(x) dx, n >= 0, where w(x) = sqrt(3)*(1 + sqrt(1 - x/108))^(2/3)/(12*2^(1/3)*Pi*x^(5/6)*sqrt(1 - x/108)) + 2^(4/3)*sqrt(3)/(864*Pi*x^(1/6)*(1 + sqrt(1 - x/108))^(2/3)*sqrt(1 - x/108)). The weight function w(x) is singular at x=0 and at x=108 and is the solution of the Hausdorff moment problem. This solution is unique. - Karol A. Penson, Mar 01 2018
a(n) = 2^(4*n)*binomial(-n-1/2, 2*n). - Ira M. Gessel, Jan 04 2025
Comments