cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061162 a(n) = (6n)!n!/((3n)!(2n)!^2).

Original entry on oeis.org

1, 30, 2310, 204204, 19122246, 1848483780, 182327718300, 18236779032600, 1842826521244230, 187679234340049620, 19232182592635611060, 1980665038436368775400, 204826599735691440534300, 21255328931341321610645544, 2212241139727064219063537016
Offset: 0

Views

Author

Richard Stanley, Apr 17 2001

Keywords

Comments

According to page 781 of the cited reference the generating function F(x) for a(n) is algebraic but not obviously so and the minimal polynomial satisfied by F(x) is quite large.
This sequence is the particular case a = 3, b = 1 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and gcd(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A211419 (a = 3, b = 2), A211420 (a = 4, b = 1) and A211421 (a = 4, b = 3) and A061163 (a = 5, b = 1). The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas). - Peter Bala, Apr 10 2012

References

  • M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.
  • R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

Crossrefs

Programs

  • Maple
    A061162 := n->(6*n)!*n!/((3*n)!*(2*n)!^2);
  • Mathematica
    a[n_] := 16^n Gamma[3 n + 1/2]/(Gamma[n + 1/2] Gamma[2 n + 1]);
    Table[a[n], {n, 0, 14}] (* Peter Luschny, Mar 01 2018 *)
  • PARI
    { for (n=0, 100, write("b061162.txt", n, " ", (6*n)!*n!/((3*n)!*(2*n)!^2)) ) } \\ Harry J. Smith, Jul 18 2009

Formula

a(n) ~ 1/2*Pi^(-1/2)*n^(-1/2)*2^(2*n)*3^(3*n)*{1 - 1/72*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002
n*(2*n-1)*a(n) -6*(6*n-1)*(6*n-5)*a(n-1)=0. - R. J. Mathar, Oct 26 2014
From Peter Bala, Aug 21 2016: (Start)
a(n) = Sum_{k = 0..2*n} binomial(6*n, k)*binomial(4*n - k - 1, 2*n - k).
a(n) = Sum_{k = 0..n} binomial(8*n, 2*n - 2*k)*binomial(2*n + k - 1, k).
O.g.f. A(x) = Hypergeom([5/6, 1/6], [1/2], 108*x).
a(n) = [x^(2*n)] H(x)^n, where H(x) = (1 + x)^6/(1 - x)^2. Cf. A091496 and A262732. It follows that the o.g.f. A(x) for this sequence is the diagonal of the bivariate rational generating function 1/2*( 1/(1 - t*H(sqrt(x))) + 1/(1 - t*H(-sqrt(x))) ) and hence is algebraic by Stanley 1999, Theorem 6.33, p. 197.
Let G(x) = 1/x * series reversion( x*(1 - x)/(1 + x)^3 ) = 1 + 4*x + 23*x^2 + 156*x^3 + 1162*x^4 + ..., essentially the o.g.f. for A007297. Then A(x^2) equals the even part of 1 + x*(d/dx log(G(x))).
exp(Sum_{n >= 1} a(n)*x^n/n) = F(x), where F(x) = 1 + 30*x + 1605*x^2 + 107218*x^3 + 8043114*x^4 + 647773116*x^5 + 54730094637*x^6 + ... has integer coefficients since F(x^2) = G(x)*G(-x). Furthermore, F(x)^(1/6) = 1 + 5*x + 205*x^2 + 12328*x^3 + 874444*x^4 + 68022261*x^5 + 5613007167*x^6 + ... appears to have all integer coefficients. (End)
a(n) is the n-th moment of the positive weight function w(x) on x = (0,108), i.e.: a(n) = Integral_{x=0..108} x^n*w(x) dx, n >= 0, where w(x) = sqrt(3)*(1 + sqrt(1 - x/108))^(2/3)/(12*2^(1/3)*Pi*x^(5/6)*sqrt(1 - x/108)) + 2^(4/3)*sqrt(3)/(864*Pi*x^(1/6)*(1 + sqrt(1 - x/108))^(2/3)*sqrt(1 - x/108)). The weight function w(x) is singular at x=0 and at x=108 and is the solution of the Hausdorff moment problem. This solution is unique. - Karol A. Penson, Mar 01 2018
a(n) = 2^(4*n)*binomial(-n-1/2, 2*n). - Ira M. Gessel, Jan 04 2025