cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A245405 Number A(n,k) of endofunctions on [n] such that no element has a preimage of cardinality k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 2, 6, 1, 1, 2, 3, 24, 1, 1, 4, 9, 40, 120, 1, 1, 4, 24, 76, 205, 720, 1, 1, 4, 27, 208, 825, 2556, 5040, 1, 1, 4, 27, 252, 2325, 10206, 24409, 40320, 1, 1, 4, 27, 256, 3025, 31956, 143521, 347712, 362880, 1, 1, 4, 27, 256, 3120, 44406, 520723, 2313200, 4794633, 3628800
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2014

Keywords

Examples

			Square array A(n,k) begins:
0 :   1,    1,     1,     1,     1,     1,     1, ...
1 :   1,    0,     1,     1,     1,     1,     1, ...
2 :   2,    2,     2,     4,     4,     4,     4, ...
3 :   6,    3,     9,    24,    27,    27,    27, ...
4 :  24,   40,    76,   208,   252,   256,   256, ...
5 : 120,  205,   825,  2325,  3025,  3120,  3125, ...
6 : 720, 2556, 10206, 31956, 44406, 46476, 46650, ...
		

Crossrefs

Main diagonal gives A061190.
A(n,n+1) gives A000312.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 and i=0, 1,
          `if`(i<1, 0, add(`if`(j=k, 0, b(n-j, i-1, k)*
           binomial(n, j)), j=0..n)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    nn = n; f[m_]:=Flatten[Table[m[[j, i - j + 1]], {i, 1, Length[m]}, {j, 1, i}]]; f[Transpose[Table[Prepend[Table[n! Coefficient[Series[(Exp[x] -x^k/k!)^n, {x, 0, nn}],x^n], {n, 1, 10}], 1], {k, 0, 10}]]] (* Geoffrey Critzer, Jan 31 2015 *)

Formula

A(n,k) = n! * [x^n] (exp(x)-x^k/k!)^n.

A372229 a(n) is the largest prime factor of n^n - n.

Original entry on oeis.org

2, 3, 7, 13, 311, 43, 337, 193, 333667, 13421, 266981089, 28393, 29914249171, 10678711, 1321, 184417, 7563707819165039903, 236377, 192696104561, 920421641, 12271836836138419, 39700406579747, 58769065453824529, 152587500001, 4315817869647001, 797161
Offset: 2

Views

Author

Tyler Busby, Apr 23 2024

Keywords

Crossrefs

Programs

  • Maple
    pf := n -> NumberTheory:-PrimeFactors(n): a := n -> max(pf(n^n - n));
    seq(a(n), n = 2..27);  # Peter Luschny, Apr 27 2024
  • Mathematica
    Table[f = FactorInteger[n^n-n]; f[[Length[f]]][[1]], {n,2,25}] (* Vaclav Kotesovec, Apr 26 2024 *)
  • Python
    from sympy import primefactors
    def A372229(n): return max(max(primefactors(n),default=1),max(primefactors(n**(n-1)-1),default=1)) # Chai Wah Wu, Apr 27 2024

Formula

a(n) = A006530(A061190(n)).

A372599 Number of distinct prime factors of n^n-n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 4, 6, 5, 6, 5, 9, 5, 6, 12, 8, 4, 10, 5, 11, 7, 6, 7, 12, 8, 13, 8, 10, 6, 14, 8, 12, 9, 10, 18, 18, 6, 11, 11, 19, 8, 16, 5, 12, 13, 7, 7, 20, 5, 18, 12, 14, 7, 21, 12, 19, 10, 10, 7, 24, 7, 10, 20, 15, 13, 19, 6, 19, 11, 19, 9, 25, 6, 13
Offset: 2

Views

Author

Tyler Busby, May 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = PrimeNu[n^n - n];
    Table[a[n], {n, 2, 75}] (* Robert P. P. McKone, May 07 2024 *)
  • PARI
    a(n) = omega(n^n-n);
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A372599(n): return primenu(n*(n**(n-1)-1)) # Chai Wah Wu, May 07 2024

Formula

a(n) = A001221(A061190(n)).

A377675 Number of prime factors of n^n-n (counted with multiplicity).

Original entry on oeis.org

1, 4, 5, 7, 5, 9, 7, 12, 8, 9, 7, 13, 6, 11, 17, 16, 6, 17, 7, 15, 10, 10, 10, 19, 11, 18, 15, 14, 7, 22, 13, 21, 11, 14, 22, 24, 7, 15, 15, 26, 9, 20, 7, 17, 17, 12, 11, 30, 9, 24, 15, 20, 10, 29, 16, 27, 12, 13, 9, 29, 8, 18, 29, 27, 15, 24, 8, 23, 13, 25
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeOmega[n^n - n]; Array[a, 45, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = bigomega(n^n-n);

Formula

a(n) = A001222(A061190(n)).

A377676 a(n) is the number of divisors of n^n - n.

Original entry on oeis.org

2, 8, 18, 40, 24, 120, 48, 336, 80, 192, 72, 1920, 48, 288, 23040, 1728, 36, 10240, 72, 7680, 432, 240, 384, 32256, 640, 49152, 2016, 3840, 96, 193536, 1152, 22528, 1152, 4608, 1327104, 1638400, 96, 7680, 9216, 4128768, 384, 294912, 72, 23040, 30720, 576
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, n^n - n]; Array[a, 45, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = numdiv(n^n-n);

Formula

a(n) = A000005(A061190(n)).

A377677 a(n) is the sum of the divisors of n^n - n.

Original entry on oeis.org

3, 60, 728, 10416, 116064, 2837120, 36990720, 1452853584, 27615698352, 965243666880, 23861701899840, 1355882884941312, 20758574413420992, 1604569397488307712, 93340493714183159808, 3135286584767445151680, 90560273718863022770592, 8284620870197084160000000
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n^n - n]; Array[a, 20, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = sigma(n^n-n);

Formula

a(n) = A000203(A061190(n)).

A377678 a(n) = phi(n^n - n) where phi is the Euler totient function.

Original entry on oeis.org

1, 8, 72, 768, 12400, 217728, 7112448, 94371840, 2594586816, 69139840000, 2584376931840, 58779453358080, 4367959006806720, 100089965305451520, 3251736576000000000, 200445251536048619520, 12343971160877345120064, 422076038504126628593664
Offset: 2

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[n^n - n]; Array[a, 20, 2] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = eulerphi(n^n-n);

Formula

a(n) = A000010(A061190(n)).
Showing 1-7 of 7 results.