A061205 a(n) = n times R(n) where R(n) (A004086) is the digit reversal of n.
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 121, 252, 403, 574, 765, 976, 1207, 1458, 1729, 40, 252, 484, 736, 1008, 1300, 1612, 1944, 2296, 2668, 90, 403, 736, 1089, 1462, 1855, 2268, 2701, 3154, 3627, 160, 574, 1008, 1462, 1936, 2430, 2944, 3478, 4032, 4606
Offset: 0
Examples
a(10) = 10 = 10 * 01. a(11) = 121 = 11 * 11. a(12) = 252 = 12 * 21. a(13) = 403 = 13 * 31.
Links
- Harry J. Smith and Indranil Ghosh, Table of n, a(n) for n = 0..10000 (first 1001 terms from Harry J. Smith)
Programs
-
Haskell
a061205 n = a004086 n * n -- Reinhard Zumkeller, Apr 10 2012, Apr 29 2011
-
Mathematica
#*FromDigits[Reverse[IntegerDigits[#]]] &/@Range[0, 49] (* Ant King, Jan 07 2012 *) #*IntegerReverse[#]& /@ Range[0, 49] (* Jean-François Alcover, Oct 27 2019 *)
-
PARI
rev(k) = subst(Polrev(digits(k)), x, 10); a(n) = n*rev(n); \\ Michel Marcus, Feb 14 2015
-
PARI
a(n) = n*fromdigits(Vecrev(digits(n))); \\ Michel Marcus, May 28 2018
-
Python
def A061205(n): return n*A004086(n) # Indranil Ghosh, Jan 09 2017
Extensions
Corrected and extended by Patrick De Geest, Jun 04 2001
Comments