cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A203924 Indices of terms which appear at least twice already earlier in A061205.

Original entry on oeis.org

372, 441, 483, 492, 651, 672, 861, 2412, 2532, 2652, 3162, 3472, 3612, 3720, 3732, 3782, 3852, 3913, 3972, 4053, 4182, 4221, 4263, 4410, 4431, 4473, 4592, 4623, 4641, 4683, 4704, 4812, 4824, 4830, 4851, 4853, 4893, 4920, 4932, 4944, 6132, 6174, 6231, 6293
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2012

Keywords

Comments

Motivated by a question from Franklin T. Adams-Watters, cf. link.

Examples

			A061205(156)=101556=A061205(273)=A061205(372), and this is the first time a term appears for the third time in A061205, therefore a(1)=372.
		

Programs

  • PARI
    seen=dupe=[];for(n=0,999999, setsearch(seen,t=A061205(n)) | !(seen=setunion(seen,Set(t))) | next; setsearch(dupe,t) & (print1(n",")|next); dupe=setunion(dupe,Set(t)))

Extensions

a(8)-a(44) from Donovan Johnson, Jan 07 2012

A133019 Product of n-th prime and n-th prime written backwards.

Original entry on oeis.org

4, 9, 25, 49, 121, 403, 1207, 1729, 736, 2668, 403, 2701, 574, 1462, 3478, 1855, 5605, 976, 5092, 1207, 2701, 7663, 3154, 8722, 7663, 10201, 31003, 75007, 98209, 35143, 91567, 17161, 100147, 129409, 140209, 22801, 117907, 58843, 127087
Offset: 1

Views

Author

Omar E. Pol, Oct 27 2007

Keywords

Comments

a(8) = 1729 is the second taxicab number, also called the Hardy-Ramanujan number (see A001235, A011541 and A133029).

Examples

			a(8) = 1729 because the 8th prime is 19 and 19 written backwards is 91 and 19*91 = 1729.
		

Crossrefs

Programs

  • Mathematica
    #*FromDigits[Reverse[IntegerDigits[#]]] & /@ Prime[Range[1, 50]] (* G. C. Greubel, Oct 02 2017 *)
    #*IntegerReverse[#]&/@Prime[Range[40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 29 2021 *)
  • PARI
    vector(60, n, prime(n)*subst(Polrev(digits(prime(n))), x, 10)) \\ Michel Marcus, Dec 17 2014

Formula

a(n) = A000040(n) * A004087(n)

A070760 Numbers k such that k*rev(k) is a square different from k^2, where rev=A004086, decimal reversal.

Original entry on oeis.org

100, 144, 169, 200, 288, 300, 400, 441, 500, 528, 600, 700, 768, 800, 825, 867, 882, 900, 961, 1089, 1100, 1584, 2178, 2200, 3300, 4400, 4851, 5500, 6600, 7700, 8712, 8800, 9801, 9900, 10000, 10100, 10404, 10609, 10989
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Comments

If k is a palindrome (A002113), then 100*k is a term. If k is a term, then 100*k is a term. - Chai Wah Wu, Mar 31 2018
From Bernard Schott, Jan 02-10 2019: (Start)
There are six different families of integers in this sequence.
1) If k and rev(k) do not have the same number of digits:
All these integers are in A322835 where the first four families are explained and detailed.
Family 1: A002113(j) * 100^k
Family 2: A035090(j) * 100^k
Family 3: A082994(j) * 100^k
Family 4: A323061(j) * 10^(2k+1)
2) If k and rev(k) have the same number of digits.
All these integers are in A062917.
Family 5: Non-palindromic squares whose reverse is also square. These integers are in A035090.
Family 6: Non-palindromic numbers k, such that k * rev(k) is a square, with k and rev(k) not both square. These integers are in A082994.
3) Relationships between these different sequences.
A035090 Union A082994 = A062917 with empty intersection, and,
A062917 Union A322835 = {This sequence} with empty intersection. (End)

Examples

			a(2)=144: rev(144)=441, 144*441=(12^2)*(21^2)=(12*21)^2 and 144<>12*21=252.
From _Bernard Schott_, Jan 02 2019: (Start)
Example for family 1: 200 * 2 = 400 = 20^2
Example for family 2: 14400 * 441 = 120^2 * 21^2 = 2520^2
Example for family 3: 28800 * 882 = (2 * 120^2) * (2 * 21^2) = 5040^2
Example for family 4: 5449680 * 869445 = 2176740^2
Example for family 5: 169 * 961 = 13^2 * 31^2 = 403^2
Example for family 6: 528 * 825 = (33 * 4^2) * (33 * 5^2) = 660^2. (End)
		

Crossrefs

Programs

  • Haskell
    a070760 n = a070760_list !! (n-1)
    a070760_list = [x | x <- [0..], let y = a061205 x,
                        y /= x ^ 2, a010052 y == 1]
    -- Reinhard Zumkeller, Apr 10 2012, Apr 29 2011
  • Mathematica
    Select[ Range[11000], (k = Sqrt[ # * FromDigits @ Reverse @ IntegerDigits[#]]; IntegerQ[k] && k != #) &] (* Jean-François Alcover, Nov 30 2011 *)
    sdnQ[n_]:=Module[{c=n*IntegerReverse[n]},c!=n^2&&IntegerQ[Sqrt[c]]]; Select[ Range[11000],sdnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 25 2016 *)

A073805 Numbers k such that 1 + k*R(k) is prime, where R(k) is the reverse of k.

Original entry on oeis.org

1, 2, 4, 6, 10, 16, 18, 20, 24, 25, 26, 28, 36, 42, 50, 52, 58, 61, 62, 63, 66, 68, 70, 80, 81, 82, 85, 86, 90, 100, 108, 112, 116, 120, 132, 136, 138, 140, 152, 162, 170, 190, 198, 200, 204, 205, 209, 210, 211, 213, 214, 219, 223, 224, 228, 231, 234, 236, 238
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 23 2002

Keywords

Examples

			16 is a term because 16*61 + 1 = 977 is prime.
		

Crossrefs

Programs

  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= t -> isprime(t*rev(t)+1):
    select(filter, [$1..1000]); # Robert Israel, Jul 03 2024
  • Mathematica
    Select[Range[250],PrimeQ[# IntegerReverse[#]+1]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 05 2017 *)

A256756 a(n) = bitwise XOR of n and the reverse of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 25, 18, 39, 60, 45, 86, 67, 72, 22, 25, 0, 55, 50, 45, 36, 83, 78, 65, 29, 18, 55, 0, 9, 22, 27, 108, 117, 122, 44, 39, 50, 9, 0, 27, 110, 101, 100, 111, 55, 60, 45, 22, 27, 0, 121, 114, 111, 100, 58, 45, 36, 27, 110, 121
Offset: 0

Views

Author

Alois P. Heinz, Apr 09 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> Bits[Xor](n, (s-> parse(cat(s[-i]$i=1..length(s))))(""||n)):
    seq(a(n), n=0..80);
  • Mathematica
    Table[BitXor[n,FromDigits[Reverse[IntegerDigits[n]]]],{n,0,65}] (* Ivan N. Ianakiev, Apr 10 2015 *)
  • PARI
    a(n) = bitxor(n, subst(Polrev(digits(n)), x, 10)); \\ Michel Marcus, Apr 10 2015

Formula

a(n) = A003987(n, A004086(n)).

A305231 Numbers that are the product of some integer and its digit reversal.

Original entry on oeis.org

0, 1, 4, 9, 10, 16, 25, 36, 40, 49, 64, 81, 90, 100, 121, 160, 250, 252, 360, 400, 403, 484, 490, 574, 640, 736, 765, 810, 900, 976, 1000, 1008, 1089, 1207, 1210, 1300, 1458, 1462, 1600, 1612, 1729, 1855, 1936, 1944, 2268, 2296, 2430, 2500, 2520, 2668, 2701
Offset: 1

Views

Author

Jon E. Schoenfield, May 27 2018

Keywords

Comments

Terms of A061205, sorted in increasing order, with duplicates removed.

Examples

			12*21 = 252, so 252 is a term.
156*651 = 101556, so 101556 is a term. (It can also be written as 273*372; see A203924.)
		

Crossrefs

Cf. A325148 (squares), A359981 (nonsquares).

Programs

  • Maple
    a:= proc(n) option remember; local k, d; for k from 1+a(n-1) do
          for d in numtheory[divisors](k) do if k = d*(s-> parse(cat(
          seq(s[-i], i=1..length(s)))))(""||d) then return k fi od od
        end: a(1):=0:
    seq(a(n), n=1..60);  # Alois P. Heinz, May 27 2018
  • Mathematica
    a={0}; h=-1; For[k=0, k<=2701, k++, For[m=1, m<=DivisorSigma[0, k], m++, d=Divisors[k]; If[k/Part[d, m] == FromDigits[Reverse[IntegerDigits[Part[d, m]]]] && k>h , AppendTo[a, k]; h=k]]]; a (* Stefano Spezia, Jan 28 2023 *)
  • PARI
    isok(n) = if (n==0, return (1), fordiv(n, d, if (n/d == fromdigits(Vecrev(digits(d))), return (1))); return (0)); \\ Michel Marcus, May 28 2018

A256754 a(n) = bitwise AND of n and the reverse of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 4, 13, 8, 3, 16, 1, 16, 19, 0, 4, 22, 0, 8, 16, 26, 8, 16, 28, 2, 13, 0, 33, 34, 33, 36, 1, 2, 5, 0, 8, 8, 34, 44, 36, 0, 10, 16, 16, 0, 3, 16, 33, 36, 55, 0, 9, 16, 27, 4, 16, 26, 36, 0, 0, 66, 64, 68, 64, 6, 1, 8, 1, 10
Offset: 0

Views

Author

Alois P. Heinz, Apr 09 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> Bits[And](n, (s-> parse(cat(s[-i]$i=1..length(s))))(""||n)):
    seq(a(n), n=0..80);
  • Mathematica
    Table[BitAnd[n,FromDigits[Reverse[IntegerDigits[n]]]],{n,0,74}] (* Ivan N. Ianakiev, Apr 10 2015 *)
  • PARI
    a(n) = bitand(n, subst(Polrev(digits(n)), x, 10)); \\ Michel Marcus, Apr 10 2015

Formula

a(n) = A004198(n,A004086(n)).

A256755 a(n) = bitwise OR of n and the reverse of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 29, 31, 47, 63, 61, 87, 83, 91, 22, 29, 22, 55, 58, 61, 62, 91, 94, 93, 31, 31, 55, 33, 43, 55, 63, 109, 119, 127, 44, 47, 58, 43, 44, 63, 110, 111, 116, 127, 55, 63, 61, 55, 63, 55, 121, 123, 127, 127, 62, 61, 62, 63, 110
Offset: 0

Views

Author

Alois P. Heinz, Apr 09 2015

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> Bits[Or](n, (s-> parse(cat(s[-i]$i=1..length(s))))(""||n)):
    seq(a(n), n=0..80);
  • Mathematica
    Table[BitOr[n,FromDigits[Reverse[IntegerDigits[n]]]],{n,0,64}] (* Ivan N. Ianakiev, Apr 10 2015 *)
  • PARI
    a(n) = bitor(n, subst(Polrev(digits(n)), x, 10)); \\ Michel Marcus, Apr 10 2015

Formula

a(n) = A003986(n,A004086(n)).

A342127 Numbers m such that the product of m and the string m in reverse contains m as a substring.

Original entry on oeis.org

0, 1, 5, 6, 10, 47, 50, 60, 75, 78, 100, 125, 152, 457, 500, 600, 750, 1000, 1025, 1052, 1250, 1520, 5000, 5625, 6000, 7500, 10000, 10025, 10052, 10250, 10520, 12266, 12500, 15200, 23258, 43567, 50000, 56250, 60000, 62656, 75000, 82291, 90625, 98254, 100000, 100025, 100052, 100250, 100520
Offset: 1

Views

Author

Scott R. Shannon, Mar 01 2021

Keywords

Comments

Numerous patterns exist in the terms, e.g., all numbers of the form 1*10^k, 5*10^k, 6*10^k, 75*10^k, 10^(k+2)+25, where k>=0, are in the sequence.

Examples

			6 is a term as 6*reverse(6) = 6*6 = 36 contains '6' as a substring.
47 is a term as 47*reverse(47) = 47*74 = 3478 contains '47' as a substring.
1052 is a term as 1052*reverse(1052) = 1052*2501 = 2631052 contains '1052' as a substring.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,d,Lp,r,i;
      L:= convert(n,base,10);
      d:= nops(L);
      r:= add(L[-i]*10^(i-1),i=1..d);
      Lp:= convert(n*r,base,10);
      ormap(t -> Lp[t..t+d-1] = L, [$1..nops(Lp)+1-d])
    end proc:
    select(filter, [$0..120000]); # Robert Israel, Mar 24 2024
  • Mathematica
    Select[Range[0,110000],SequenceCount[IntegerDigits[# IntegerReverse[#]],IntegerDigits[#]]>0&] (* Harvey P. Dale, Apr 20 2024 *)
  • PARI
    isok(m) = #strsplit(Str(m*fromdigits(Vecrev(digits(m)))), Str(m)) > 1; \\ Michel Marcus, Mar 01 2021
    
  • Python
    def ok(n): return (s:=str(n)) in str(n*int(s[::-1]))
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Mar 25 2024

A133022 Product of n-th Fibonacci number and n-th Fibonacci number written backwards.

Original entry on oeis.org

0, 1, 1, 4, 9, 25, 64, 403, 252, 1462, 3025, 8722, 63504, 77356, 291421, 9760, 778743, 12697747, 12537568, 7584334, 38398140, 710406346, 208476181, 2168819074, 4004525952, 3905576425, 47722137553, 160019976838, 37728297243, 474332543035, 33479625520
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			403 = 13*31.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> (s-> f*parse(cat(s[-i]$i=1..length(s))))(
              ""||f))(((<<0|1>, <1|1>>^n)[1, 2])):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 06 2018
  • Mathematica
    #*FromDigits[Reverse[IntegerDigits[#]]]&/@Fibonacci[Range[0,40]] (* Harvey P. Dale, Oct 12 2012 *)

Formula

a(n) = A000045(n) * A004091(n).

Extensions

Corrected and extended by Harvey P. Dale, Oct 12 2012
Showing 1-10 of 16 results. Next