A061206 a(n) = total number of occurrences of the consecutive pattern 1324 in all permutations of [n+3].
1, 10, 90, 840, 8400, 90720, 1058400, 13305600, 179625600, 2594592000, 39956716800, 653837184000, 11333177856000, 207484333056000, 4001483566080000, 81096733605888000, 1723305589125120000, 38318206628782080000, 889833909490606080000, 21543347282404147200000
Offset: 1
Keywords
Examples
a(4)=840 because 4*(7!)/24 = 4*7*6*5 = 840.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..300
- Milan Janjić, Enumerative Formulas for Some Functions on Finite Sets.
Programs
-
Magma
[n*Factorial(n+3)/24: n in [1..20]]; // Vincenzo Librandi, Oct 11 2011
-
Maple
a := n -> n!*binomial(-n,4): seq(a(n),n=1..20); # Peter Luschny, Apr 29 2016
-
Mathematica
Array[# (# + 3)!/24 &, 20] (* or *) Array[#!*Binomial[-#, 4] &, 20] (* Michael De Vlieger, Sep 30 2017 *)
-
PARI
a(n) = n*(n+3)!/24; \\ Altug Alkan, Oct 08 2017
-
Sage
[binomial(n,4)*factorial (n-3) for n in range(4, 21)] # Zerinvary Lajos, Jul 07 2009
Formula
a(n) = n*(n+3)!/24.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*Stirling1(n,k)*Stirling2(j,i) * x^(k-j), then a(n-3) = (-1)^n*f(n,4,-2), (n >= 4). - Milan Janjic, Mar 01 2009
E.g.f.: x/(1-x)^5. (This was initiated by e-mail exchange with Gary Detlefs.) - Wolfdieter Lang, May 28 2010
a(n) = ((n+4)!/6) * Sum_{k=1..n} (k+2)!/(k+4)!. - Gary Detlefs, Aug 05 2010
a(n) = Sum_{k>0} k * A264173(n+3,k). - Alois P. Heinz, Nov 06 2015
a(n) = n!*binomial(-n,4). - Peter Luschny, Apr 29 2016
From Amiram Eldar, Sep 24 2022: (Start)
Sum_{n>=1} 1/a(n) = 118/3 - 16*e - 4*gamma + 4*Ei(1), where gamma is Euler's constant (A001620) and Ei(1) is the exponential integral at 1 (A091725).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2/3 - 8/e + 4*gamma - 4*Ei(-1), where -Ei(-1) is the negated exponential integral at -1 (A099285). (End)
Extensions
More terms from Jason Earls, Jun 12 2001
Corrected by Zerinvary Lajos, Jul 07 2009
More precise definition from Alois P. Heinz, Nov 06 2015
Comments