A061256 Euler transform of sigma(n), cf. A000203.
1, 1, 4, 8, 21, 39, 92, 170, 360, 667, 1316, 2393, 4541, 8100, 14824, 26071, 46422, 80314, 139978, 238641, 408201, 686799, 1156062, 1920992, 3189144, 5238848, 8589850, 13963467, 22641585, 36447544, 58507590, 93334008, 148449417, 234829969, 370345918
Offset: 0
Examples
1 + x + 4*x^2 + 8*x^3 + 21*x^4 + 39*x^5 + 92*x^6 + 170*x^7 + 360*x^8 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
- J. R. Britnell, A formal identity involving commuting triples of permutations, arXiv:1203.5079 [math.CO], 2012.
- J. R. Britnell, A formal identity involving commuting triples of permutations, Preprint 2012. - _N. J. A. Sloane_, Jun 13 2012
- J. R. Britnell, A formal identity involving commuting triples of permutations, Journal of Combinatorial Theory, Series A, Volume 120, Issue 4, May 2013.
- E. Marberg, How to compute the Frobenius-Schur indicator of a unipotent character of a finite Coxeter system, arXiv preprint arXiv:1202.1311 [math.RT], 2012. - _N. J. A. Sloane_, Jun 10 2012
- Secret Blogging Seminar, A peculiar numerical coincidence.
- N. J. A. Sloane, Transforms
- Tad White, Counting Free Abelian Actions, arXiv:1304.2830 [math.CO], 2013.
Crossrefs
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add( d*sigma(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Jun 08 2017
-
Mathematica
nn = 30; b = Table[DivisorSigma[1, n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 18 2012 *) nmax = 40; CoefficientList[Series[Product[1/QPochhammer[x^k]^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
-
PARI
N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^j)^j); Vec(gf) /* Joerg Arndt, May 03 2008 */
-
PARI
{a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^m+x*O(x^n))^2/m)),n))} /* Paul D. Hanna, Mar 28 2009 */
Formula
a(n) = A072169(n) / n!.
G.f.: Product_{k=1..infinity} (1 - x^k)^(-sigma(k)). a(n)=1/n*Sum_{k=1..n} a(n-k)*b(k), n>1, a(0)=1, b(k)=Sum_{d|k} d*sigma(d), cf. A001001.
G.f.: exp( Sum_{n>=1} sigma(n)*x^n/(1-x^n)^2 /n ). [Paul D. Hanna, Mar 28 2009]
G.f.: exp( Sum_{n>=1} sigma_2(n)*x^n/(1-x^n)/n ). [Vladeta Jovovic, Mar 28 2009]
G.f.: prod(n>=1, E(x^n)^n ) where E(x) = prod(k>=1, 1-x^k). [Joerg Arndt, Apr 12 2013]
a(n) ~ exp((3*Pi)^(2/3) * Zeta(3)^(1/3) * n^(2/3)/2 - Pi^(4/3) * n^(1/3) / (4 * 3^(2/3) * Zeta(3)^(1/3)) - 1/24 - Pi^2/(288*Zeta(3))) * A^(1/2) * Zeta(3)^(11/72) / (2^(11/24) * 3^(47/72) * Pi^(11/72) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 23 2018
Extensions
Entry revised by N. J. A. Sloane, Jun 13 2012
Comments