A079860 Duplicate of A061256.
1, 1, 4, 8, 21, 39, 92, 170, 360, 667, 1316, 2393, 4541, 8100, 14824, 26071
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + ... a(3) = 6 because we have (111) = (111) = (11)(1) = (1)(1)(1), (12) = (12) = (1)(2), (3) = (3). The a(4)=14 multiset partitions whose total sum of parts is 4 are: ((4)), ((13)), ((1)(3)), ((22)), ((2)(2)), ((112)), ((1)(12)), ((2)(11)), ((1)(1)(2)), ((1111)), ((1)(111)), ((11)(11)), ((1)(1)(11)), ((1)(1)(1)(1)). - _Gus Wiseman_, Dec 19 2016
Following Vladeta Jovovic: a001970 n = a001970_list !! (n-1) a001970_list = 1 : f 1 [1] where f x ys = y : f (x + 1) (y : ys) where y = sum (zipWith (*) ys a061259_list) `div` x -- Reinhard Zumkeller, Oct 31 2015
with(combstruct); SetSetSetU := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled]; # second Maple program: with(numtheory): with(combinat): a:= proc(n) option remember; `if`(n=0, 1, add(add(d* numbpart(d), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..35); # Alois P. Heinz, Dec 19 2016
m = 32; f[x_] = Product[1/(1-x^k)^PartitionsP[k], {k, 1, m}]; CoefficientList[ Series[f[x], {x, 0, m-1}], x] (* Jean-François Alcover, Jul 19 2011, after g.f. *)
{a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k + x * O(x^n)), n))}; /* Michael Somos, Dec 20 2016 */
from sympy.core.cache import cacheit from sympy import npartitions, divisors @cacheit def a(n): return 1 if n == 0 else sum([sum([d*npartitions(d) for d in divisors(j)])*a(n - j) for j in range(1, n + 1)]) / n [a(n) for n in range(51)] # Indranil Ghosh, Aug 19 2017, after Maple code # (Sage) # uses[EulerTransform from A166861] b = BinaryRecurrenceSequence(0, 1, 1) a = EulerTransform(EulerTransform(b)) print([a(n) for n in range(36)]) # Peter Luschny, Nov 17 2022
For n=3 we have 3 = (3*1) = (1*3) = (2*1) + (1*1) = (1*2) + (1*1) = (1*1) + (1*1) + (1*1) so a(3)=5. For n=4 we have the following 11 partitions, with the additive runs indicated by "[]": [4], [3]+[1], [2+2], [2]+[2], [2]+[1+1], [2]+[1]+[1], [1+1+1+1], [1+1+1]+[1], [1+1]+[1+1], [1+1]+[1]+[1], [1]+[1]+[1]+[1]. - _Gregory L. Simay_, May 25 2017
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(tau): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
max = 50; gf[x_] := Product[(1 - x^k)^-DivisorSigma[0, k], {k, 1, max}]; CoefficientList[ Series[gf[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011 *) nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2018, the fastest *) nmax = 50; CoefficientList[Series[Product[Sum[PartitionsP[k]*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 26 2020 *)
{a(n) = if(n<0, 0, polcoeff( 1 / prod(k=1, n, (1 - x^k + x * O(x^n))^numdiv(k)), n))}; /* Michael Somos, Apr 01 2003 */
N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^j)); Vec(gf) \\ Joerg Arndt, May 03 2008
{a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^m+x*O(x^n))/m)),n))} /* Paul D. Hanna, Mar 28 2009 */
{A060640(n)=sumdiv(n, d, d*sigma(n/d))} {a(n)=polcoeff(exp(sum(m=1,n+1,A060640(m)*x^m/m)+x*O(x^n)),n)} /* Paul D. Hanna, Oct 19 2011 */
a:= func< n | NumberOfPartitions(n)*Factorial(n) >; [ a(n) : n in [0..25]]; // Vincenzo Librandi, Jan 17 2019
seq(count(Permutation(n))*count(Partition(n)),n=1..20); # Zerinvary Lajos, Oct 16 2006 with(combinat): A053529 := proc(n): n! * numbpart(n) end: seq(A053529(n), n=0..20); # Johannes W. Meijer, Jul 28 2016
Table[PartitionsP[n] n!, {n, 0, 20}] (* T. D. Noe, Jun 19 2012 *)
N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, x^k/(1-x^k)/k)))) \\ Joerg Arndt, Apr 16 2010
N=66; x='x+O('x^N); Vec(serlaplace(sum(n=0, N, x^n/prod(k=1,n,1-x^k)))) \\ Joerg Arndt, Jan 29 2011
a(n) = n!*numbpart(n); \\ Michel Marcus, Jul 28 2016
from math import factorial from sympy import npartitions def A053529(n): return factorial(n)*npartitions(n) # Chai Wah Wu, Jul 10 2023
a001001 n = sum [sum [k * (if k `mod` l == 0 then l else 0) | k <- [1..n], n `mod` k == 0 ] | l <- [1..n]] a = [ a001001 n | n <- [1..53]] putStrLn $ concat $ map (++ ", ") (map show a) -- Miles Wilson, Apr 04 2025
nmax := 100: L12 := [seq(1,i=1..nmax) ]; L27 := [seq(i,i=1..nmax) ]; L290 := [seq(i^2,i=1..nmax) ]; DIRICHLET(L12,L27) ; DIRICHLET(%,L290) ; # R. J. Mathar, Sep 25 2017
a[n_] := Sum[ d*DivisorSigma[1, d], {d, Divisors[n]}]; Table[ a[n], {n, 1, 42}] (* Jean-François Alcover, Jan 20 2012, after Vladeta Jovovic *) f[p_, e_] := Product[(p^(e + k) - 1)/(p^k - 1), {k, 1, 2}]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
N=17; default(seriesprecision,N); x=z+O(z^(N+1)) c=sum(j=1,N,j*x^j); t=1/prod(j=1,N, eta(x^(j))^j) t=log(t) t=serconvol(t,c) Vec(t) /* Joerg Arndt, May 03 2008 */
a(n)=sumdiv(n,d, d * sumdiv(d,t, t ) ); /* Joerg Arndt, Oct 07 2012 */
a(n)=sumdivmult(n,d, sigma(d)*d) \\ Charles R Greathouse IV, Sep 09 2014
nn = 20; b = Table[EulerPhi[n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
nn = 30; b = Table[DivisorSigma[1, n], {n, nn}]; CoefficientList[Series[Product[(1 + x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *) kmax = 37; Product[QPochhammer[-1, x^k]^k/2^k, {k, 1, kmax}] + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, Jul 03 2017 *) nmax = 40; CoefficientList[Series[Exp[Sum[Sum[DivisorSum[k, # / GCD[#, 2] &] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)
N=66; x='x+O('x^N); Q(x)=prod(k=1,N,1+x^k); gf=prod(k=1,N, Q(x^k)^k ); Vec(gf) /* Joerg Arndt, Jun 24 2011 */
nn = 20; b = Table[CarmichaelLambda[n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add( d*sigma[2](d), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Jun 08 2017
nmax = 35; CoefficientList[Series[Product[1/(1 - x^k)^(DivisorSigma[2, k]), {k, 1, nmax}], {x, 0, nmax}], x]
m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-q^k)^DivisorSigma(3,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add( d*sigma[3](d), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Jun 08 2017
nmax = 40; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 23 2018 *)
m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^sigma(k,3))) \\ G. C. Greubel, Oct 30 2018
Comments