cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A002131 Sum of divisors d of n such that n/d is odd.

Original entry on oeis.org

1, 2, 4, 4, 6, 8, 8, 8, 13, 12, 12, 16, 14, 16, 24, 16, 18, 26, 20, 24, 32, 24, 24, 32, 31, 28, 40, 32, 30, 48, 32, 32, 48, 36, 48, 52, 38, 40, 56, 48, 42, 64, 44, 48, 78, 48, 48, 64, 57, 62, 72, 56, 54, 80, 72, 64, 80, 60, 60, 96, 62, 64, 104, 64, 84, 96, 68, 72, 96, 96, 72
Offset: 1

Views

Author

Keywords

Comments

Glaisher calls this Delta'(n) or Delta'1(n). - _N. J. A. Sloane, Nov 24 2018
Equals row sums of triangle A143119. - Gary W. Adamson, Jul 26 2008
Cayley begins article 386 with "To find the value of A, = 8{q/(1-q)^2 + q^3/(1-q^3)^2 +&c.}," where A is 8 time the g.f. of this sequence. - Michael Somos, Aug 01 2011
a(n) = 2*(a(n-1) - a(n-4) + a(n-9) ... +- a(n-i^2) ...) up to the last positive number n - i^2, and if n is a square, then a(0) should be replaced by n/2 (cf. Halphen). - Michel Marcus, Oct 14 2012
From Omar E. Pol, Nov 26 2019: (Start)
a(n) is also the total number of odd parts in the partitions of n into equal parts.
a(n) = n iff n is a power of 2.
a(n) = n + 1 iff n is an odd prime. (End)

Examples

			G.f. = q + 2*q^2 + 4*q^3 + 4*q^4 + 6*q^5 + 8*q^6 + 8*q^7 + 8*q^8 + 13*q^9 + ...
The divisors of 6 are 1, 2, 3, and 6. Only 6/2 and 6/6 are odd. Hence, a(6) = 2 + 6 = 8.
As 120 = 15 * 2^3 where 15 is odd and 2^3 is the largest power of 2 dividing 120, a(120) = sigma(15) * 2^3 = 24 * 8 = 192. - _David A. Corneth_, Aug 12 2019
For n = 6 the partitions of 6 into equal parts are [6], [3,3], [2,2,2], [1,1,1,1,1,1]. There are 8 odd parts, so a(6) = 8. - _Omar E. Pol_, Nov 26 2019
		

References

  • A. Cayley, An Elementary Treatise on Elliptic Functions, G. Bell and Sons, London, 1895, p. 294, Art. 386.
  • G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 346 Exercise XXI(18). MR0121327 (22 #12066)
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eqs. (5.1.29.3), (5.1.29.9).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060047. Bisection A008438.

Programs

  • Haskell
    a002131 n = sum [d | d <- [1..n], mod n d == 0, odd $ div n d]
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    [&+[d:d in Divisors(m)|IsOdd(Floor(m/d))] :m in [1..75]]; // Marius A. Burtea, Aug 12 2019
    
  • Maple
    a:= proc(n) local e;
      e:= 2^padic:-ordp(n,2);
      e*numtheory:-sigma(n/e)
    end proc:
    map(a, [$1..100]); # Robert Israel, Jul 05 2016
  • Mathematica
    a[n_]:=Total[Cases[Divisors[n], d_ /; OddQ[n/d]]]; Table[a[n],{n,1,71}] (* Jean-François Alcover, Mar 18 2011 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[n, # / GCD[#, 2] &]] (* Michael Somos, Aug 01 2011 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1/8) EllipticK[ m] ( EllipticK[ m] - EllipticE[ m] ) / (Pi/2 )^2, {q, 0, n}]] (* Michael Somos, Aug 01 2011 *)
    Table[Total[Select[Divisors[n],OddQ[n/#]&]],{n,80}] (* Harvey P. Dale, Jun 05 2015 *)
    a[ n_] := SeriesCoefficient[ With[ {m = InverseEllipticNomeQ[q]}, (1/2) (EllipticK[ m] / Pi)^2 (D[ JacobiZeta[ JacobiAmplitude[x, m], m], x] /. x -> 0)], {q, 0, n}]; (* Michael Somos, Mar 17 2017 *)
    f[2, e_] := 2^e; f[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 21 2020 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 - (p<3) * X) / ((1 - X) * (1 - p*X))) [n])}; /* Michael Somos, Apr 05 2003 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, d / gcd(d, 2)))}; /* Michael Somos, Apr 05 2003 */
    
  • PARI
    a(n) = my(v = valuation(n, 2)); sigma(n>>v)<David A. Corneth, Aug 12 2019
    
  • Python
    from math import prod
    from sympy import factorint
    def A002131(n): return prod(p**e if p == 2 else (p**(e+1)-1)//(p-1) for p, e in factorint(n).items()) # Chai Wah Wu, Dec 17 2021

Formula

Expansion of K(k^2) * (K(k^2) - E(k^2)) / (2 * Pi^2) in powers of q where q is Jacobi's nome and K(), E() are complete elliptic integrals. - Michael Somos, Aug 01 2011
Multiplicative with a(p^e) = p^e if p = 2; (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = sigma(n) - sigma(n/2) for even n and = sigma(n) otherwise where sigma(n) is the sum of divisors of n (A000203). - Valery A. Liskovets, Apr 07 2002
G.f.: A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = 2*u1*u6 - u1*u3 - 10*u2*u6 + u2^2 + 2*u2*u3 + 9*u6^2. - Michael Somos, Apr 10 2005
G.f.: A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (u2 - 3*u6)^2 - (u1 - 2*u2) * (u3 - 2*u6). - Michael Somos, Sep 06 2005
G.f.: Sum_{n>=1} n*x^n/(1-x^(2*n)). - Vladeta Jovovic, Oct 16 2002
G.f.: Sum_{k>0} x^(2*k - 1) / (1 - x^(2*k - 1))^2. - Michael Somos, Aug 17 2005
G.f.: (1/8) * theta_4''(0) / theta_4(0) = (Sum_{k>0} -(-1)^k * k^2 q^(k^2)) / (Sum_{k in Z} (-1)^k * q^(k^2)) where theta_4(u) is one of Jacobi's theta functions.
G.f.: A(q) = Z'(0) * K^2 / (2 * Pi^2) = (K - E) * K /(2 * Pi^2) where Z(u) is the Jacobi Zeta function and K, E are complete elliptic integrals. - Michael Somos, Sep 06 2005
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1 - 1/2^s). - Michael Somos, Apr 05 2003
Moebius transform is A026741.
a(n) = n * Sum_{c|n} 1/c, where c are odd numbers (A005408) dividing n. a(n) = A069359(n) + n. a(n) = A000035(n) (*) A000027(n), where operation (*) denotes Dirichlet convolution, that is, convolution of type: a(n) = Sum_{d|n} b(d) * c(n/d) = Sum_{d|n} A000035(d) * A000027(n/d). -Jaroslav Krizek, Nov 07 2013
L.g.f.: Sum_{ k>0 } atanh(x^k) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
a(n) = A006519(n)*A000203(n/A006519(n)). - Robert Israel, Jul 05 2016
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 /16. - Vaclav Kotesovec, Feb 01 2019
a(n) = (A000203(n) + A000593(n))/2. - Amiram Eldar, Aug 12 2019
From Peter Bala, Jan 06 2021: (Start)
G.f.: A(x) = (1/2)*Sum_{n = -oo..oo} x^(2*n+1)/(1 - x^(2*n+1))^2.
A(x) = Sum_{n = -oo..oo} x^(4*n+1)/(1 - x^(4*n+1))^2.
a(2*n) = 2*a(n); a(2*n+1) = A008438(n). (End)
Expansion of (-1/2) x (d phi(-x) / dx) / phi(-x) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Jul 01 2023

A107742 G.f.: Product_{j>=1} Product_{i>=1} (1 + x^(i*j)).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 17, 25, 38, 59, 86, 125, 184, 260, 369, 524, 726, 1005, 1391, 1894, 2576, 3493, 4687, 6272, 8373, 11090, 14647, 19294, 25265, 32991, 42974, 55705, 72025, 92895, 119349, 152965, 195592, 249280, 316991, 402215, 508932, 642598, 809739, 1017850, 1276959, 1599015, 1997943, 2491874, 3102477, 3855165, 4782408, 5922954
Offset: 0

Views

Author

Vladeta Jovovic, Jun 11 2005

Keywords

Comments

From Gus Wiseman, Sep 13 2022: (Start)
Also the number of multiset partitions of integer partitions of n into intervals, where an interval is a set of positive integers with all differences of adjacent elements equal to 1. For example, the a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1},{1}} {{1,2}} {{1},{3}}
{{1},{2}} {{2},{2}}
{{1},{1},{1}} {{1},{1,2}}
{{1},{1},{2}}
{{1},{1},{1},{1}}
Intervals are counted by A001227, ranked by A073485.
The initial version is A007294.
The strict version is A327731.
The version for gapless multisets instead of intervals is A356941.
The case of strict partitions is A356957.
Also the number of multiset partitions of integer partitions of n into distinct constant blocks. For example, the a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1,1}} {{1,1,1}} {{2,2}}
{{1},{2}} {{1},{3}}
{{1},{1,1}} {{1,1,1,1}}
{{2},{1,1}}
{{1},{1,1,1}}
Constant multisets are counted by A000005, ranked by A000961.
The non-strict version is A006171.
The unlabeled version is A089259.
The non-constant block version is A261049.
The version for twice-partitions is A279786, factorizations A296131.
Also the number of multiset partitions of integer partitions of n into constant blocks of odd length. For example, a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1},{1}} {{1,1,1}} {{1},{3}}
{{1},{2}} {{2},{2}}
{{1},{1},{1}} {{1},{1,1,1}}
{{1},{1},{2}}
{{1},{1},{1},{1}}
The strict version is A327731 (also).
(End)

Crossrefs

Product_{k>=1} (1 + x^k)^sigma_m(k): this sequence (m=0), A192065 (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).
A000041 counts integer partitions, strict A000009.
A000110 counts set partitions.
A072233 counts partitions by sum and length.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j)), {i, 1, nmax}, {j, 1, nmax/i}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 04 2017 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 23 2018 *)
    nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 28 2018 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@chQ/@#&]],{n,0,5}] (* Gus Wiseman, Sep 13 2022 *)
  • PARI
    a(n)=polcoeff(prod(k=1,n,prod(j=1,n\k,1+x^(j*k)+x*O(x^n))),n) /* Paul D. Hanna */
    
  • PARI
    N=66;  x='x+O('x^N); gf=1/prod(j=0,N, eta(x^(2*j+1))); gf=prod(j=1,N,(1+x^j)^numdiv(j)); Vec(gf) /* Joerg Arndt, May 03 2008 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^(2*m)+x*O(x^n))/m)),n))} /* Paul D. Hanna, Mar 28 2009 */

Formula

Euler transform of A001227.
Weigh transform of A000005.
G.f. satisfies: log(A(x)) = Sum_{n>=1} A109386(n)/n*x^n, where A109386(n) = Sum_{d|n} d*Sum_{m|d} (m mod 2). - Paul D. Hanna, Jun 26 2005
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1-x^(2n)) /n ). - Paul D. Hanna, Mar 28 2009
G.f.: Product_{n>=1} Q(x^n) where Q(x) is the g.f. of A000009. - Joerg Arndt, Feb 27 2014
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109386(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 04 2017
Conjecture: log(a(n)) ~ Pi*sqrt(n*log(n)/6). - Vaclav Kotesovec, Aug 29 2018

Extensions

More terms from Paul D. Hanna, Jun 26 2005

A061256 Euler transform of sigma(n), cf. A000203.

Original entry on oeis.org

1, 1, 4, 8, 21, 39, 92, 170, 360, 667, 1316, 2393, 4541, 8100, 14824, 26071, 46422, 80314, 139978, 238641, 408201, 686799, 1156062, 1920992, 3189144, 5238848, 8589850, 13963467, 22641585, 36447544, 58507590, 93334008, 148449417, 234829969, 370345918
Offset: 0

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

This is also the number of ordered triples of permutations f, g, h in Symm(n) which all commute, divided by n!. This was conjectured by Franklin T. Adams-Watters, Jan 16 2006, and proved by J. R. Britnell in 2012.
According to a message on a blog page by "Allan" (see Secret Blogging Seminar link) it appears that a(n) = number of conjugacy classes of commutative ordered pairs in Symm(n).
John McKay (email to N. J. A. Sloane, Apr 23 2013) observes that A061256 and A006908 coincide for a surprising number of terms, and asks for an explanation. - N. J. A. Sloane, May 19 2013

Examples

			1 + x + 4*x^2 + 8*x^3 + 21*x^4 + 39*x^5 + 92*x^6 + 170*x^7 + 360*x^8 + ...
		

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), this sequence (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*sigma(d), d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 08 2017
  • Mathematica
    nn = 30; b = Table[DivisorSigma[1, n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 18 2012 *)
    nmax = 40; CoefficientList[Series[Product[1/QPochhammer[x^k]^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 29 2015 *)
  • PARI
    N=66; x='x+O('x^N); gf=1/prod(j=1,N, eta(x^j)^j); Vec(gf) /* Joerg Arndt, May 03 2008 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^m+x*O(x^n))^2/m)),n))} /* Paul D. Hanna, Mar 28 2009 */

Formula

a(n) = A072169(n) / n!.
G.f.: Product_{k=1..infinity} (1 - x^k)^(-sigma(k)). a(n)=1/n*Sum_{k=1..n} a(n-k)*b(k), n>1, a(0)=1, b(k)=Sum_{d|k} d*sigma(d), cf. A001001.
G.f.: exp( Sum_{n>=1} sigma(n)*x^n/(1-x^n)^2 /n ). [Paul D. Hanna, Mar 28 2009]
G.f.: exp( Sum_{n>=1} sigma_2(n)*x^n/(1-x^n)/n ). [Vladeta Jovovic, Mar 28 2009]
G.f.: prod(n>=1, E(x^n)^n ) where E(x) = prod(k>=1, 1-x^k). [Joerg Arndt, Apr 12 2013]
a(n) ~ exp((3*Pi)^(2/3) * Zeta(3)^(1/3) * n^(2/3)/2 - Pi^(4/3) * n^(1/3) / (4 * 3^(2/3) * Zeta(3)^(1/3)) - 1/24 - Pi^2/(288*Zeta(3))) * A^(1/2) * Zeta(3)^(11/72) / (2^(11/24) * 3^(47/72) * Pi^(11/72) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 23 2018

Extensions

Entry revised by N. J. A. Sloane, Jun 13 2012

A299069 Expansion of Product_{k>=1} (1 + x^k)^phi(k), where phi() is the Euler totient function (A000010).

Original entry on oeis.org

1, 1, 1, 3, 4, 8, 11, 19, 30, 44, 69, 103, 157, 229, 341, 491, 722, 1038, 1488, 2128, 3015, 4267, 5989, 8407, 11713, 16289, 22523, 31097, 42729, 58569, 80003, 108957, 147983, 200383, 270693, 364631, 490105, 656961, 878775, 1172653, 1561626, 2074982, 2751648, 3641536, 4810009, 6341365, 8344967
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 09 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(numtheory[phi](i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 09 2018
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 + x^k)^EulerPhi[k], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d EulerPhi[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 46}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000010(k).
a(n) ~ exp(3^(5/3) * Zeta(3)^(1/3) * n^(2/3) / (2*Pi^(2/3))) * Zeta(3)^(1/6) / (2^(1/3) * 3^(1/6) * Pi^(5/6) * n^(2/3)). - Vaclav Kotesovec, Mar 23 2018

A280540 G.f.: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(i*j).

Original entry on oeis.org

1, 1, 5, 11, 33, 67, 180, 366, 871, 1782, 3927, 7885, 16637, 32763, 66469, 128938, 253871, 484034, 930959, 1747304, 3292730, 6092664, 11282364, 20596790, 37568653, 67736175, 121886533, 217261372, 386216073, 681119439, 1197524035, 2091091902, 3639519280
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
log(a(n)) ~ (3/2)^(2/3) * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3). - Vaclav Kotesovec, Aug 28 2018

A280541 G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(i*j).

Original entry on oeis.org

1, 1, 4, 10, 24, 52, 125, 253, 549, 1126, 2290, 4525, 8987, 17259, 33174, 62669, 117425, 217295, 399904, 726984, 1314257, 2354807, 4191671, 7405590, 13009916, 22696115, 39384232, 67937488, 116584833, 199001304, 338076500, 571507377, 961855945, 1611567819
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j))^(i*j), {i, 1, nmax}, {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[k*DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*d(k)), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Aug 26 2018
Conjecture: log(a(n)) ~ 3 * Zeta(3)^(1/3) * log(n)^(1/3) * n^(2/3) / 2^(4/3). - Vaclav Kotesovec, Aug 29 2018

A288414 Expansion of Product_{k>=1} (1 + x^k)^(sigma_2(k)).

Original entry on oeis.org

1, 1, 5, 15, 41, 107, 286, 700, 1735, 4162, 9803, 22673, 51822, 116376, 258548, 567197, 1230763, 2642958, 5622616, 11850537, 24769248, 51353095, 105662389, 215838649, 437890022, 882562763, 1767741732, 3519599996, 6967592060, 13717874719, 26865949075
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2017

Keywords

Crossrefs

Product_{k>=1} (1 + x^k)^sigma_m(k): A107742 (m=0), A192065 (m=1), this sequence (m=2), A288415 (m=3).

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+q^k)^DivisorSigma(2,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    with(numtheory): seq(coeff(series(mul((1+x^k)^(sigma[2](k)),k=1..n),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[2, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
  • PARI
    m=40; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^sigma(k,2))) \\ G. C. Greubel, Oct 30 2018
    

Formula

a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A288419(k)*a(n-k) for n > 0.
a(n) ~ exp(2^(5/4) * (7*Zeta(3))^(1/4) * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - 5^(1/4) * Pi * n^(1/4) / (2^(13/4) * 3^(7/4) * (7*Zeta(3))^(1/4))) * (7*Zeta(3))^(1/8) / (2^(15/8) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Mar 23 2018
G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(j^2). - Ilya Gutkovskiy, Aug 26 2018

A301555 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(sigma(k)).

Original entry on oeis.org

1, 2, 8, 22, 62, 154, 392, 914, 2136, 4776, 10544, 22626, 47982, 99538, 204100, 411714, 821130, 1616170, 3148812, 6066338, 11579954, 21893214, 41045780, 76306030, 140783060, 257789064, 468783092, 846697340, 1519599658, 2710476106, 4806507720, 8475250510
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Comments

Convolution of A061256 and A192065.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((3*Pi)^(2/3) * (7*Zeta(3))^(1/3) * n^(2/3) / 2^(5/3) - 3^(1/3) * Pi^(4/3) * n^(1/3) / (2^(7/3) * (7*Zeta(3))^(1/3)) - 1/24 - Pi^2 / (224 * Zeta(3))) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(13/18) * 3^(47/72) * Pi^(11/72) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: Product_{i>=1, j>=1} ((1 + x^(i*j))/(1 - x^(i*j)))^i. - Ilya Gutkovskiy, Aug 29 2018

A288415 Expansion of Product_{k>=1} (1 + x^k)^(sigma_3(k)).

Original entry on oeis.org

1, 1, 9, 37, 137, 487, 1749, 5901, 19695, 63832, 202905, 632689, 1941394, 5860868, 17448558, 51255292, 148726841, 426605755, 1210569740, 3400427281, 9460683203, 26083933370, 71300381025, 193313191005, 520057831035, 1388722752205, 3682100198763
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2017

Keywords

Crossrefs

Product_{k>=1} (1 + x^k)^sigma_m(k): A107742 (m=0), A192065 (m=1), A288414 (m=2), this sequence (m=3).

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+q^k)^DivisorSigma(3,k): k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    with(numtheory): seq(coeff(series(mul((1+x^k)^(sigma[3](k)),k=1..n),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
  • PARI
    m=40; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^sigma(k,3))) \\ G. C. Greubel, Oct 30 2018
    

Formula

a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A288420(k)*a(n-k) for n > 0.
a(n) ~ exp(5*Pi^(4/5) * Zeta(5)^(1/5) * n^(4/5) / 2^(12/5)) * Zeta(5)^(1/10) / (2^(169/240) * sqrt(5) * Pi^(1/10) * n^(3/5)). - Vaclav Kotesovec, Mar 23 2018
G.f.: Product_{i>=1, j>=1} (1 + x^(i*j))^(j^3). - Ilya Gutkovskiy, Aug 26 2018

A294361 E.g.f.: exp(Sum_{n>=1} sigma(n) * x^n).

Original entry on oeis.org

1, 1, 7, 43, 409, 3841, 50431, 648187, 10347793, 170363809, 3200390551, 62855417131, 1371594161257, 31147757782753, 768384638386639, 19814802390611131, 545309251861956001, 15661899520801953217, 475833949719419469223, 15042718034104688144299
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2017

Keywords

Comments

From Peter Bala, Nov 14 2017: (Start)
The terms of the sequence appear to be of the form 6*m + 1.
It appears that the sequence taken modulo 10 is periodic with period 5. More generally, we conjecture that for k = 2,3,4,... the sequence a(n+k) - a(n) is divisible by k: if true, then for each k the sequence a(n) taken modulo k would be periodic with the exact period dividing k. (End)
From Peter Bala, Mar 28 2022: (Start)
The above conjectures are true. See the Bala link.
a(7*n+2) == 0 (mod 7); a(11*n+9) == 0 (mod 11); a(13*n+11) == 0 (mod 13). (End)

Crossrefs

E.g.f.: exp(Sum_{n>=1} sigma_k(n) * x^n): A294363 (k=0), this sequence (k=1), A294362 (k=2).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 04 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, sigma(k)*x^k))))

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000203(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: Product_{k>=1} exp(k*x^k/(1 - x^k)). - Ilya Gutkovskiy, Nov 27 2017
a(n) ~ Pi^(1/3) * exp((3*Pi)^(2/3) * n^(2/3)/2 - 3^(1/3) * n^(1/3) / (2*Pi^(2/3)) + 1/24 - 1/(8*Pi^2) - n) * n^(n - 1/6) / 3^(2/3). - Vaclav Kotesovec, Sep 04 2018
Showing 1-10 of 27 results. Next