cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A068361 Numbers n such that the number of squarefree numbers between prime(n) and prime(n+1) = prime(n+1)-prime(n)-1.

Original entry on oeis.org

1, 3, 10, 13, 26, 33, 60, 89, 104, 113, 116, 142, 148, 201, 209, 212, 234, 265, 268, 288, 313, 320, 332, 343, 353, 384, 398, 408, 477, 484, 498, 542, 545, 551, 577, 581, 601, 625, 636, 671, 719, 723, 726, 745, 794, 805, 815, 862, 864, 884, 944, 964, 995, 1054
Offset: 1

Views

Author

Benoit Cloitre, Feb 28 2002

Keywords

Comments

Also numbers k such that all numbers from prime(k) to prime(k+1) are squarefree. All such primes are twins, so this is a subset of A029707. The other twin primes are A061368. - Gus Wiseman, Dec 11 2024

Crossrefs

A subset of A029707 (lesser index of twin primes).
Prime index of each (prime) term of A061351.
Positions of zeros in A061399.
For perfect power instead of squarefree we have A377436, zeros of A377432.
Positions of zeros in A377784.
The rest of the twin primes are at A378620, indices of A061368.
A000040 lists the primes, differences A001223, (run-lengths A333254, A373821).
A005117 lists the squarefree numbers, differences A076259.
A006562 finds balanced primes.
A013929 lists the nonsquarefree numbers, differences A078147.
A014574 is the intersection of A006093 and A008864.
A038664 locates the first prime gap of size 2n.
A046933 counts composite numbers between primes.
A061398 counts squarefree numbers between primes, zeros A068360.
A120327 gives the least nonsquarefree number >= n.

Programs

  • Mathematica
    Select[Range[100],And@@SquareFreeQ/@Range[Prime[#],Prime[#+1]]&] (* Gus Wiseman, Dec 11 2024 *)
  • PARI
    isok(n) = for (k=prime(n)+1, prime(n+1)-1, if (!issquarefree(k), return (0))); 1; \\ Michel Marcus, Apr 29 2016

Formula

n such that A061398(n) = prime(n+1)-prime(n)-1.
prime(a(n)) = A061351(n). - Gus Wiseman, Dec 11 2024

A378032 a(1) = a(2) = 1; a(n>2) is the greatest nonsquarefree number < prime(n).

Original entry on oeis.org

1, 1, 4, 4, 9, 12, 16, 18, 20, 28, 28, 36, 40, 40, 45, 52, 56, 60, 64, 68, 72, 76, 81, 88, 96, 100, 100, 104, 108, 112, 126, 128, 136, 136, 148, 150, 156, 162, 164, 172, 176, 180, 189, 192, 196, 198, 208, 220, 225, 228, 232, 236, 240, 250, 256, 261, 268, 270
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Examples

			The terms together with their prime indices begin:
    1: {}
    1: {}
    4: {1,1}
    4: {1,1}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   28: {1,1,4}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   40: {1,1,1,3}
   45: {2,2,3}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

Terms appearing twice are A061351 + 1.
For prime-powers we have A065514 (diffs A377781), opposite A345531 (diffs A377703).
For squarefree we have A112925 (differences A378038).
The opposite for squarefree is A112926 (differences A378037).
The opposite is A377783 (union A378040), restriction of A120327 (differences A378039).
Restriction of A378033, which has differences A378036.
The first-differences are A378034, opposite A377784.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Table[NestWhile[#-1&,Prime[n],#>1&&SquareFreeQ[#]&],{n,100}]

Formula

a(n) = A378033(prime(n)).

A109945 Primes p such that [p,p+2] is a pair of twin primes and (p*(p+2)-1)/2 is prime.

Original entry on oeis.org

3, 5, 11, 29, 41, 71, 137, 281, 461, 599, 641, 827, 881, 1091, 1301, 1607, 2129, 2267, 2381, 2687, 3527, 3557, 3581, 4127, 4229, 4337, 4547, 5009, 5741, 6131, 6791, 6959, 7211, 7487, 7547, 8009, 8597, 8861, 9041, 9281, 10007, 10037, 10427, 10889, 11117
Offset: 1

Views

Author

Hugo Pfoertner, Jul 09 2005

Keywords

Examples

			3 is in the sequence because [3,5] is a pair of twin primes and (3*5 - 1)/2=7 is prime.
		

Crossrefs

Cf. A086870 [corresponding primes], A093706 [primes p such that (p*nextprime(p)-1)/2 is prime], A061351 [number separating twin pair is squarefree].

Programs

  • Mathematica
    lst={}; d=2; Do[p1=Prime[n]; p2=Prime[n+1]; If[p2-p1==2&&PrimeQ[(p1*p2-1)/2], AppendTo[lst, p1]], {n, 10^3}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 08 2008 *)
Showing 1-3 of 3 results.