cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340208 Constant whose decimal expansion is the concatenation of the smallest n-digit cube A061434(n), for n = 1, 2, 3, ...

Original entry on oeis.org

1, 2, 7, 1, 2, 5, 1, 0, 0, 0, 1, 0, 6, 4, 8, 1, 0, 3, 8, 2, 3, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 7, 7, 6, 9, 6, 1, 0, 0, 5, 4, 4, 6, 2, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 7, 8, 7, 3, 8, 7, 5, 1, 0, 0, 0, 2, 6, 5, 7, 7, 2, 8, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

M. F. Hasler, Dec 31 2020

Keywords

Comments

Every third smallest n-digit cube (i.e., for n = 3k + 1, k >= 0) is 10^k, which explains the chunks of (1,0,...,0), cf. formula.
The terms of sequence A215692 converge to this sequence of digits, and to this constant, up to powers of 10.

Examples

			The smallest cube with 1, 2, 3, 4, ... digits is, respectively, 1, 27 = 3^3, 125 = 5^3, 1000 = 10^3, .... Here we list the sequence of digits of these numbers: 1; 2, 7; 1, 2, 5; 1, 0, 0, 0; ...
This can be considered, as for the Champernowne and Copeland-Erdős constants, as the decimal expansion of a real constant 0.1271251000106481...
As a triangle, in which row n contains the decimal expansion of the smallest n-digit cube:
  1
  2 7
  1 2 5
  1 0 0 0
  1 0 6 4 8
  1 0 3 8 2 3
  1 0 0 0 0 0 0
  1 0 0 7 7 6 9 6
  ...
		

Crossrefs

Cf. A061434 (smallest n-digit cube), A215692 (has this as "limit"), A340209 (same with largest n-digit cubes, limit of A340115), A340206 (same for squares, limit of A215689), A340219 (same for primes, limit of A215641), A340221 (same for semiprimes, limit of A215647).
Cf. A033307 (Champernowne constant), A030190 (binary), A001191 (concatenation of all squares), A134724 (cubes), A033308 (primes: Copeland-Erdős constant).

Programs

  • PARI
    concat([digits(ceil(10^((k-1)/3))^3)|k<-[1..14]]) \\ as seq. of digits
    c(N=12)=sum(k=1,N,.1^(k*(k+1)/2)*ceil(10^((k-1)/2))^2) \\ as constant

Formula

c = 0.12712510001064810382310000001007769610054462510000000001000787387510002657...
= Sum_{k >= 1} 10^(-k(k+1)/2)*ceiling(10^((k-1)/3))^2
a(-n(n+1)/2) = 1 for all n >= 2;
a(k) = 0 for -3n(3n+1)/2 > k > -(3n+1)(3n+2)/2, n >= 0.

A018005 Smallest number whose cube has n digits.

Original entry on oeis.org

1, 3, 5, 10, 22, 47, 100, 216, 465, 1000, 2155, 4642, 10000, 21545, 46416, 100000, 215444, 464159, 1000000, 2154435, 4641589, 10000000, 21544347, 46415889, 100000000, 215443470, 464158884, 1000000000, 2154434691, 4641588834
Offset: 1

Views

Author

Keywords

Comments

With offset 0, ((cube root of 10) to the power n) rounded up.
From Carmine Suriano, Mar 14 2020: (Start)
The terms corresponding to n = (20,21); (38,39); (41,42); (56,57); (59,60); (77,78); (80,81) ... are such that the square of first term starts with the digits of second term, and the square of second term starts with the digits of the first. For example, a(38)^2 = 2154434690032^2 = 4641588833613.... and a(39)^2 = 4641588833613^2 = 2154434690032...
(End)

Examples

			a(5) = 22, 22^3 = 10648 has 5 digits, while 21^3 = 9261 has 4 digits.
		

Crossrefs

Cf. A061434, A061439, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), this sequence (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).

Programs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A061435 a(n) is the largest n-digit cube.

Original entry on oeis.org

8, 64, 729, 9261, 97336, 970299, 9938375, 99897344, 997002999, 9993948264, 99961946721, 999700029999, 9999516957184, 99994258523375, 999970000299999, 9999934692543307, 99999429057832312, 999997000002999999
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			a(4) = 9261 = 21^3 has 4 digits while 22^3 = 10648 has 5 digits.
		

Crossrefs

Programs

  • Maple
    A061435 := n->(ceil(10^(n/3))-1)^3;
  • Mathematica
    Table[Floor[Surd[10^n-1,3]]^3,{n,20}] (* Harvey P. Dale, Apr 02 2020 *)

Formula

a(n) = (ceiling(10^(n/3)) - 1)^3. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
Showing 1-3 of 3 results.