cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061725 p^2 + 2 where p is a prime.

Original entry on oeis.org

6, 11, 27, 51, 123, 171, 291, 363, 531, 843, 963, 1371, 1683, 1851, 2211, 2811, 3483, 3723, 4491, 5043, 5331, 6243, 6891, 7923, 9411, 10203, 10611, 11451, 11883, 12771, 16131, 17163, 18771, 19323, 22203, 22803, 24651, 26571, 27891, 29931
Offset: 1

Views

Author

Jason Earls, Jun 23 2001

Keywords

Comments

For any n >= 3, a(n) is of the form a(n) = 27 + 6m, m >= 0 integer. This follows from the simple fact that for any prime p >= 5, (p + 5)(p - 5) is divisible by 6. - Shai Covo (green355(AT)netvision.net.il), Oct 04 2010

References

  • David M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, pp. 51.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Example 5.1 on page 153.

Crossrefs

Programs

  • Magma
    [p^2+2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 22 2015
  • Maple
    A061725:=n->ithprime(n)^2+2: seq(A061725(n), n=1..50); # Wesley Ivan Hurt, Mar 17 2015
  • Mathematica
    Prime[Range[40]]^2 + 2 (* Geoffrey Critzer, Feb 01 2015 *)
  • PARI
    v=[]; for(n=1,100,v=concat(v,(prime(n)^2)+2)); v
    
  • PARI
    { n=0; forprime (p=2, prime(1000), write("b061725.txt", n++, " ", p^2 + 2) ) } \\ Harry J. Smith, Jul 27 2009