A061793 a(n) = 25*n*(n + 1)/2 + 3.
3, 28, 78, 153, 253, 378, 528, 703, 903, 1128, 1378, 1653, 1953, 2278, 2628, 3003, 3403, 3828, 4278, 4753, 5253, 5778, 6328, 6903, 7503, 8128, 8778, 9453, 10153, 10878, 11628, 12403, 13203, 14028, 14878, 15753, 16653, 17578, 18528, 19503, 20503, 21528, 22578, 23653
Offset: 0
References
- D. M. Burton, Elementary Number Theory, Allyn and Bacon, Inc. Boston, MA, 1976, p. 17.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..40],n->25*(n*(n+1)/2)+3); # Muniru A Asiru, Mar 30 2018
-
Maple
[seq(25*(n*(n+1)/2)+3,n=0..40)]; # Muniru A Asiru, Mar 30 2018
-
Mathematica
25*Accumulate[Range[0,40]]+3 (* Harvey P. Dale, Aug 26 2013 *)
-
PARI
a(n) = 25*n*(n + 1)/2 + 3
Formula
From Elmo R. Oliveira, Oct 23 2024: (Start)
G.f.: (3 + 19*x + 3*x^2)/(1 - x)^3.
E.g.f.: (3 + 25*x + 25*x^2/2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)
Extensions
Corrected by T. D. Noe, Oct 25 2006
Comments