cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061844 Squares that remain squares if you decrease every digit by 1.

Original entry on oeis.org

1, 36, 3136, 24336, 5973136, 71526293136, 318723477136, 264779654424693136, 24987377153764853136, 31872399155963477136, 58396845218255516736, 517177921565478376336, 252815272791521979771662766736, 518364744896318875336864648336, 554692513628187865132829886736
Offset: 1

Views

Author

Erich Friedman, Jun 23 2001

Keywords

Comments

The terms may be calculated efficiently by solving x^2 - y^2 = 111...1; this is done by factoring 111..1 = (x + y)(x - y).
Note that some solutions will produce a square containing a zero digit so the solution is impermissible; for example, 460^2 - 317^2 = 111111 but 460^2 = 211600. - Wendy Appleby, Sep 20 2015
Except for a(1) = 1, we don't allow decreasing the digits to create a leading 0. Thus 126736 = 356^2 is not included, even though 126736 - 111111 = 15625 = 125^2. - Robert Israel, Dec 30 2015
If it exists, a(79) > 10^262. - Max Alekseyev, Sep 05 2023
From Robert Israel, Jan 04 2016: (Start)
The sequence may well be finite.
It is known that A000005(n) = O(n^epsilon) for all epsilon>0.
Therefore if 1 < c < 10/9, for d sufficiently large (10^d-1)/9 has fewer than c^d divisors, and thus fewer than c^d possible candidates for x^2 having d digits.
Heuristically, x^2 has probability ~ (9/10)^d of having no digits 0.
Thus we expect fewer than (9c/10)^d terms having d digits.
Since Sum_d (9c/10)^d converges, we expect only finitely many terms.
Of course, this is only a heuristic argument, but it seems to fit well with the data. (End)

Examples

			13225 = 115^2 and 24336 = 156^2.
		

Crossrefs

Programs

  • Maple
    A:= {1}:
    for d from 1 to 96 do
      r:= (10^d-1)/9;
      f:= subs(X=10,factors((X^d-1)/(X-1))[2]);
      q:= map(t -> op(map(s -> [s[1],t[2]*s[2]], ifactors(t[1])[2])),f);
      divs:= {1};
    for t in q do
        divs:= map(x -> seq(x*t[1]^j,j=0..t[2]),divs)
      od;
      for t in select(s -> s^2 > r, divs) do
        x:= (t + r/t)/2;
        if ilog10(x^2) = d-1 and x^2 > 2*10^(d-1) and not has(convert(x^2,base,10),0) then
          A:= A union {x^2};
        fi
      od
    od:
    sort(convert(A,list)); # Robert Israel, Dec 30 2015
  • Mathematica
    For[digits = 1, digits <= 30, digits++, n = (10^digits - 1)/9; divList = Select[Divisors[n], (#1 >= Sqrt[n])&]; For[j = 1, j <= Length[divList], j++, x = (divList[[j]] + n/divList[[j]])/2; y = (divList[[j]] - n/divList[[j]])/2; dx = IntegerDigits[x^2]; dy = IntegerDigits[y^2]; If[(Length[dx] == digits) && (Length[dy] == digits) && (Select[dx, (#1 == 0)&] == {}), Print[x^2]]]]
    Flatten@Prepend[Table[Select[#[[Ceiling[(Length[#] + 1)/2] ;;]] &@(# + Reverse@#)/2 &@Divisors[(10^n - 1)/9], IntegerLength[#^2] == n && (#[[1]] != 1 && FreeQ[#, 0]&[IntegerDigits[#^2]])&]^2, {n, 30}], 1] (* JungHwan Min, Dec 29 2015 *)
    Join[{1},Select[Select[Flatten[Table[#^2&/@(x/.Solve[{x^2-y^2 == FromDigits[ PadRight[{},n,1]],x>0,y>0},{x,y},Integers]),{n,2,30}]], DigitCount[ #,10,0]==0&&IntegerDigits[#][[1]]>1&]// Union,IntegerQ[ Sqrt[ FromDigits[IntegerDigits[#]-1]]]&]] (* Harvey P. Dale, Apr 16 2016 *)

Formula

a(n) = A048379(A061843(n)). - Max Alekseyev, Jul 26 2023

Extensions

More terms and program from Jonathan Cross (jcross(AT)wcox.com), Oct 08 2001