cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A255850 Number of digits in the n-th term of A061844: Squares which remain squares if you decrease every digit by 1.

Original entry on oeis.org

1, 2, 4, 5, 7, 11, 12, 18, 20, 20, 20, 21, 30, 30, 30, 30, 30, 30, 30, 30, 32, 32, 32, 40, 42, 42, 42, 42, 42, 42, 42, 42, 42, 54, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60
Offset: 1

Views

Author

M. F. Hasler, Mar 10 2015

Keywords

Comments

Suggested by W. Appleby in a Number Theory discussion group, cf. link.

Crossrefs

Programs

Formula

a(n) = A055642(A061844(n)).

Extensions

More terms calculated from A061844 by Lars Blomberg, Aug 21 2016

A255851 Number of n-digit squares which remain squares if every digit is decreased by 1 (cf. A061844).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 34, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

M. F. Hasler, Mar 10 2015

Keywords

Comments

Counts the occurrences of n in A255850.

Crossrefs

Programs

  • PARI
    a(n,A=A255850)=sum(i=1,#A,A[i]==n)

Extensions

Corrected a(30) and more terms calculated from A061844 by Lars Blomberg, Aug 21 2016

A117755 Squares which remain squares when each digit is replaced by the next digit.

Original entry on oeis.org

0, 9, 25, 2025, 13225, 1974025, 4862025, 6943225, 60415182025, 207612366025, 916408817340025, 9960302475729225, 153668543313582025, 1978088677245614025, 13876266042653742025, 20761288044852366025, 47285734107144405625, 406066810454367265225
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 14 2006

Keywords

Comments

Replace 1 with 2, 2 with 3, ..., 8 with 9 and 9 with 0.

Examples

			13225 is in the sequence because (1) it is a square and (2) if we transform it we get 24336 and this is also a square.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 500000]^2, IntegerQ[Sqrt[FromDigits[(1 + IntegerDigits[ # ]) /. 10-> 0]]] &] (* Harvey P. Dale, Jan 21 2007 *)

Extensions

More terms from Harvey P. Dale, Jan 21 2007
3 more terms from Donovan Johnson, Apr 03 2008
a(14)-a(21) from Max Alekseyev, Oct 22 2008
a(1) = 0 prepended by Max Alekseyev, Jul 26 2023

A273234 Squares that remain squares if you decrease them by 8 times a repunit with the same number of digits.

Original entry on oeis.org

9, 889249, 896809, 908209, 902942754289, 924745719769, 946618081249, 987107822089, 910909843526089, 9810767198166489, 888909576913320169, 889214944824055249, 889286612895723249, 889972999762742809, 890923059538260849, 896642235371330809, 896979367708462809
Offset: 1

Views

Author

Paolo P. Lava, May 18 2016

Keywords

Comments

Any number ends in 9.

Examples

			9 - 8*1 = 1 = 1^2;
889249 - 8*111111 = 361 = 19^2;
896809 - 8*111111 = 7921 = 89^2.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local n; for n from 1 to q do
    if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
    fi; od; end: P(10^9,8);
  • Mathematica
    sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 8 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)

Extensions

a(11)-a(17) from Giovanni Resta, May 18 2016

A061843 Squares which remain squares if you increment every digit by 1.

Original entry on oeis.org

0, 25, 2025, 13225, 4862025, 60415182025, 207612366025, 153668543313582025, 13876266042653742025, 20761288044852366025, 47285734107144405625, 406066810454367265225, 141704161680410868660551655625
Offset: 1

Views

Author

Erich Friedman, Jun 23 2001

Keywords

Comments

Incrementing each digit means b^2-a^2 = R_n, the n-digit repunit (10^n-1)/9; so solutions must be of the form a = (u-v)/2, b = (u+v)/2, where u * v = R_n. It remains to check that this is in the right range and a has no 9's. - Franklin T. Adams-Watters, May 25 2006

Examples

			13225 = 115^2 and 24336 = 156^2.
		

Crossrefs

Subsequence of A117755.

Programs

  • Mathematica
    Select[Range[0,500000]^2,With[{lst=IntegerDigits[#]+1},Max[lst]<10&&IntegerQ[Sqrt[FromDigits[lst]]]&]] (* The program generates the first 7 terms of the sequence. *)  (* Harvey P. Dale, Jan 26 2025 *)
  • PARI
    hasdigit(n, d, b=10) = local(r); r=0;while(r==0&&n>=1,if(n%b==d,r=1,n\=b));r
    /* Generates all positive n-digit solutions (in reverse order) */
    A061843s(n) = local(f, nf, v, i, ru, lb, ub, x); lb=10^(n-1);ub=10^n-1;ru=ub\9;f=divisors(ru);v=[];nf=matsize(f)[2];for(i=1,nf\2,x=( (f[nf+1-i]-f[i])\2)^2;if(x>=lb&&x<=ub&&!hasdigit(x,9),v=concat(v,[x])));v \\ Franklin T. Adams-Watters, May 25 2006

Extensions

More terms from Franklin T. Adams-Watters, May 25 2006

A273229 Squares that remain squares if you decrease them by a repunit with the same number of digits.

Original entry on oeis.org

1, 36, 400, 3136, 24336, 115600, 118336, 126736, 211600, 309136, 430336, 577600, 5973136, 19713600, 30869136, 53582400, 3086469136, 4310710336, 71526293136, 111155560000, 112104432400, 113531259136, 137756776336, 206170483600, 245996160400, 262303768336, 308642469136
Offset: 1

Views

Author

Paolo P. Lava, May 18 2016

Keywords

Comments

Apart from the initial term, any number ends in 0 or 6.

Examples

			1 - 1 = 0 = 0^2;
36 - 11 = 25 = 5^2;
400 - 111 = 289 = 17^2;
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local n; for n from 1 to q do
    if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
    fi; od; end: P(10^9,1);
  • Mathematica
    sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@k}, Union[#+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[ x= #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)

A273230 Squares that remain squares if you decrease them by 3 times a repunit with the same number of digits.

Original entry on oeis.org

4, 49, 529, 4489, 38809, 344569, 363609, 375769, 444889, 558009, 597529, 700569, 7198489, 35366809, 44448889, 65983129, 4444488889, 5587114009, 83574762649, 335330171929, 359763638809, 390241344249, 403831017529, 407200963129, 435775577689, 444444888889, 453557800089
Offset: 1

Views

Author

Paolo P. Lava, May 18 2016

Keywords

Comments

Apart from the initial term, any number ends in 9.

Examples

			4 - 3*1 = 1 = 1^2;
49 - 3*11 = 16 = 4^2;
529 - 3*111 = 196 = 14^2.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local n; for n from 1 to q do
    if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
    fi; od; end: P(10^9,3);
  • Mathematica
    sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 3 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)

A273231 Squares that remain squares if you decrease them by 4 times a repunit with the same number of digits.

Original entry on oeis.org

4, 97344, 462400, 473344, 506944, 846400, 78854400, 444622240000, 448417729600, 454125036544, 551027105344, 824681934400, 983984641600, 460651783840000, 6703941381760000, 444446222224000000, 459134832243732544, 462218702574222400, 462583182938702400
Offset: 1

Views

Author

Paolo P. Lava, May 18 2016

Keywords

Comments

Every term ends in 0 or 4.

Examples

			4 - 4*1 = 0 = 0^2;
97344 - 4*11111 = 52900 = 230^2;
462400 - 4*111111 = 17956 = 134^2.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local n; for n from 1 to q do
    if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
    fi; od; end: P(10^9,4);
  • Mathematica
    sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 4 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)

Extensions

a(16)-a(19) from Giovanni Resta, May 18 2016

A273232 Squares that remain squares if you decrease them by 5 times a repunit with the same number of digits.

Original entry on oeis.org

9, 64, 676, 6084, 56644, 556516, 605284, 669124, 702244, 743044, 784996, 835396, 8538084, 55562116, 60497284, 79673476, 6049417284, 7028810244, 96560590564, 555838838116, 567620600836, 575774404804, 604938617284, 612115334884, 619365852004, 643617898564, 817422124996
Offset: 1

Views

Author

Paolo P. Lava, May 18 2016

Keywords

Comments

Apart from the initial term, any number ends in 4 or 6.

Examples

			9 - 5*1 = 4 = 2^2;
64 - 5*11 = 9 = 3^2;
676 - 5*111 = 121 = 11^2.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local n; for n from 1 to q do
    if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
    fi; od; end: P(10^9,5);
  • Mathematica
    sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 5 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)

A273233 Squares that remain squares if you decrease them by 7 times a repunit with the same number of digits.

Original entry on oeis.org

81, 841, 7921, 77841, 790321, 863041, 982081, 9991921, 79014321, 80299521, 94653441, 7901254321, 8635799041, 778133930161, 790123654321, 794396081521, 816057482881, 965485073281, 989863816561, 79012347654321, 86358529399041, 857789228465521, 7901234587654321, 8547733055510401
Offset: 1

Views

Author

Paolo P. Lava, May 18 2016

Keywords

Comments

Any number ends in 1.

Examples

			81 - 7*11 = 4 = 2^2;
841 - 7*111 = 64 = 8^2;
7921 - 7*1111 = 144 = 12^2.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local n; for n from 1 to q do
    if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
    fi; od; end: P(10^9,7);
  • Mathematica
    sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 7 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)
Showing 1-10 of 11 results. Next