cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061981 a(n) = 3^n - 2*n - 1.

Original entry on oeis.org

0, 0, 4, 20, 72, 232, 716, 2172, 6544, 19664, 59028, 177124, 531416, 1594296, 4782940, 14348876, 43046688, 129140128, 387420452, 1162261428, 3486784360, 10460353160, 31381059564, 94143178780, 282429536432, 847288609392
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Crossrefs

Column of A061980.

Programs

  • Mathematica
    Table[3^n-2n-1,{n,0,30}] (* or *) LinearRecurrence[{5,-7,3},{0,0,4},30] (* Harvey P. Dale, Mar 30 2018 *)
  • PARI
    a(n) = { 3^n - 2*n - 1 } \\ Harry J. Smith, Jul 29 2009
    
  • SageMath
    [3^n -(2*n+1) for n in (0..40)] # G. C. Greubel, Jun 13 2022

Formula

From Bruno Berselli, Jan 31 2012: (Start)
G.f.: 4*x^2/((1-3*x)*(1-x)^2).
a(n) = A186948(n) - 1.
a(n+2) = 4*A000340(n). (End)
From Deisy J. Camacho, Feb 26 2021 (Start)
a(n) = Sum_{j=2..n} Sum_{i=0..j} n!/((j-i)!*i!*(n-j)!).
a(n) = 4 + 4*a(n-1) - 3*a(n-2). (End)
E.g.f.: exp(3*x) - (2*x + 1)*exp(x). - G. C. Greubel, Jun 13 2022