cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A154283 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(2*n+1,i) * binomial(k+2-i,2)^n, 0 <= k <= 2*(n-1).

Original entry on oeis.org

1, 1, 4, 1, 1, 20, 48, 20, 1, 1, 72, 603, 1168, 603, 72, 1, 1, 232, 5158, 27664, 47290, 27664, 5158, 232, 1, 1, 716, 37257, 450048, 1822014, 2864328, 1822014, 450048, 37257, 716, 1, 1, 2172, 247236, 6030140, 49258935, 163809288, 242384856, 163809288, 49258935, 6030140, 247236, 2172, 1
Offset: 1

Views

Author

Roger L. Bagula, Jan 06 2009

Keywords

Comments

From Yahia Kahloune, Jan 30 2014: (Start)
In general, let b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,2,n).
With these coefficients we can calculate: Sum_{i=1..n} binomial(i+e-1,e)^p = Sum_{k=0..e*(p-1)} b(k,e,p)*binomial(n+e+k,e*p+k).
For example, A085438(n) = Sum_{i=1..n} binomial(1+i,2)^3 = T(3,0)*binomial(2+n,7) + T(3,1)*binomial(3+n,7) + T(3,2)*binomial(4+n,7) + T(3,3)*binomial(5+n,7) + T(3,4)*binomial(6+n,7) = (1/5040)*(90*n^7 + 630*n^6 + 1638*n^5 + 1890*n^4 + 840*n^3 - 48*n).
(End)
T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 06 2020

Examples

			Triangle begins:
  1;
  1,     4,       1;
  1,    20,      48,        20,           1;
  1,    72,     603,      1168,         603,           72,           1;
  1,   232,    5158,     27664,       47290,        27664,        5158,  232, 1;
  1,   716,   37257,    450048,     1822014,      2864328,     1822014, ...;
  1,  2172,  247236,   6030140,    49258935,    163809288,   242384856, ...;
  1,  6544, 1568215,  72338144,  1086859301,   6727188848, 19323413187, ...;
  1, 19664, 9703890, 811888600, 21147576440, 225167210712, ... ;
  ...
The T(2,1) = 4 permutations of 1122 with 1 descent are 1212, 1221, 2112, 2211. - _Andrew Howroyd_, May 15 2020
		

Crossrefs

Row sums are A000680.
Similar triangles for e=1..6: A173018 (or A008292), this sequence, A174266, A236463, A237202, A237252.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(2*n+1,j)*Binomial(k-j+2,2)^n: j in [0..k]]): k in [0..2*n-2], n in [1..12]]; // G. C. Greubel, Jun 13 2022
    
  • Maple
    A154283 := proc(n,k)
            (1-x)^(2*n+1)*add( (l*(l+1)/2)^n*x^(l-1),l=0..k+1) ;
            coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Feb 01 2013
  • Mathematica
    p[x_, n_]= (1-x)^(2*n+1)*Sum[(k*(k+1)/2)^n*x^k, {k, 0, Infinity}]/x;
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n,10}]//Flatten
  • PARI
    T(n,k)={sum(i=0, k, (-1)^i*binomial(2*n+1, i)*binomial(k+2-i, 2)^n)} \\ Andrew Howroyd, May 09 2020
    
  • SageMath
    def A154283(n,k): return sum((-1)^j*binomial(2*n+1, j)*binomial(k-j+2, 2)^n for j in (0..k))
    flatten([[A154283(n,k) for k in (0..2*n-2)] for n in (1..12)]) # G. C. Greubel, Jun 13 2022

Formula

T(n,k) = (-1) times coefficient of x^k in (x-1)^(2*n+1) * Sum_{k>=0} (k*(k+1)/2)^n *x^(k-1).
From Yahia Kahloune, Jan 29 2014: (Start)
Sum_{i=1..n} binomial(1+i,2)^p = Sum_{k=0..2*p-2} T(p,k)*binomial(n+2+k,2*p+1).
binomial(n,2)^p = Sum_{k=0..2*p-2} T(p,k)*binomial(n+k,2*p). (End)
From Peter Bala, Dec 21 2019: (Start)
E.g.f. as a continued fraction: (1-x)/(1-x + ( 1-exp((1-x)^2*t))*x/(1-x + (1-exp(2*(1-x)^2*t))*x/(1-x + (1-exp(3*(1-x)^2*t))*x/(1-x + ... )))) = 1 + x*t + x*(x^2 + 4*x + 1)*t^2/2! + x*(x^4 + 20*x^3 + 48*x^2 + 20*x + 1)*t^3/3! + ... (use Prodinger equation 1.1).
The sequence of alternating row sums (unsigned) [1, 1, 2, 10, 104, 1816,...] appears to be A005799. (End)

Extensions

Edited by N. J. A. Sloane, Jan 30 2014 following suggestions from Yahia Kahloune (among other things, the signs of all terms have been reversed).
Edited by Andrew Howroyd, May 09 2020

A061980 Square array A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1, read by antidiagonals.

Original entry on oeis.org

1, 0, 3, 0, 2, 9, 0, 1, 8, 27, 0, 0, 6, 26, 81, 0, 0, 4, 23, 80, 243, 0, 0, 3, 20, 76, 242, 729, 0, 0, 3, 17, 72, 237, 728, 2187, 0, 0, 1, 17, 66, 232, 722, 2186, 6561, 0, 0, 1, 11, 66, 222, 716, 2179, 6560, 19683, 0, 0, 1, 11, 54, 222, 701, 2172, 6552, 19682, 59049
Offset: 0

Views

Author

Henry Bottomley, May 24 2001

Keywords

Examples

			Array begins as:
    1,   0,   0,   0,   0,   0,   0, ...;
    3,   2,   1,   0,   0,   0,   0, ...;
    9,   8,   6,   4,   3,   3,   1, ...;
   27,  26,  23,  20,  17,  17,  11, ...;
   81,  80,  76,  72,  66,  66,  54, ...;
  243, 242, 237, 232, 222, 222, 202, ...;
  729, 728, 722, 716, 701, 701, 671, ...;
Antidiagonal rows begin as:
  1;
  0, 3;
  0, 2, 9;
  0, 1, 8, 27;
  0, 0, 6, 26, 81;
  0, 0, 4, 23, 80, 243;
  0, 0, 3, 20, 76, 242, 729;
  0, 0, 3, 17, 72, 237, 728, 2187;
  0, 0, 1, 17, 66, 232, 722, 2186, 6561;
		

Crossrefs

Row sums are 6^n: A000400.
Columns are A000244, A024023, A060188, A061981, A061982 twice, A061983 twice, etc.

Programs

  • Mathematica
    A[n_, k_]:= A[n, k]= If[n==0, Boole[k==0], A[n-1,k] +A[n-1,Floor[k/2]] +A[n-1, Floor[k/3]]];
    T[n_, k_]:= A[k, n-k];
    Table[A[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 18 2022 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if (n==0): return 0^k
        else: return A(n-1, k) + A(n-1, (k//2)) + A(n-1, (k//3))
    def T(n, k): return A(k, n-k)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 18 2022

Formula

A(n,k) = A(n-1,k) + A(n-1, floor(k/2)) + A(n-1, floor(k/3)), with A(0,0) = 1.
T(n, k) = A(k, n-k).
Sum_{k=0..n} A(n, k) = A000400(n).
T(n, n) = A(n, 0) = A000244(n). - G. C. Greubel, Jun 18 2022

A146568 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with a power of x divided out: q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x.

Original entry on oeis.org

4, 20, 20, 72, 224, 72, 232, 1672, 1672, 232, 716, 10528, 23528, 10528, 716, 2172, 60636, 259688, 259688, 60636, 2172, 6544, 331584, 2485232, 4674944, 2485232, 331584, 6544, 19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304
Offset: 2

Views

Author

Roger L. Bagula, Nov 01 2008

Keywords

Comments

First elements in each row are: 3^n - 2*n - 1 (A061981).

Examples

			Triangle starts:
{4},
{20, 20},
{72, 224, 72},
{232, 1672, 1672, 232},
{716, 10528, 23528, 10528, 716},
{2172, 60636, 259688, 259688, 60636, 2172},
{6544, 331584, 2485232, 4674944, 2485232, 331584, 6544},
{19664, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 19664},
{59028, 9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096, 59028}
		

Crossrefs

Programs

  • Mathematica
    q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = (q[x, n] - (x + 1)^n)/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 2, 10}]; Flatten[%]

Formula

q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((x+1)^n-q(x,n))/x; t(n,m)=Coefficients(p(x,n)) with n starting at 2.

A146745 Coefficients of Pascal's triangle polynomial minus MacMahon polynomial A060187 with minus the first and last row terms and powers of x divided out: f(n)=3^n - 2*n - 1; q(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p(x,n)=((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x.

Original entry on oeis.org

224, 1672, 1672, 10528, 23528, 10528, 60636, 259688, 259688, 60636, 331584, 2485232, 4674944, 2485232, 331584, 1756304, 21707888, 69413168, 69413168, 21707888, 1756304, 9116096, 178300784, 906923072, 1527092216, 906923072
Offset: 2

Views

Author

Roger L. Bagula, Nov 01 2008

Keywords

Comments

Row sums starting with n=4 are {224, 3344, 44584, 640648, 10308576, 185754720, 3715772120}. First elements in each row are {224, 1672, 1672, 10528, 60636, 331584, 1756304, 9116096}. Subtracting out the row terms gives the middle elements of the difference.

Examples

			Triangle starts
{224},
{1672, 1672},
{10528, 23528, 10528},
{60636, 259688, 259688, 60636},
{331584, 2485232, 4674944, 2485232, 331584},
{1756304, 21707888, 69413168, 69413168, 21707888, 1756304},
{9116096, 178300784, 906923072, 1527092216, 906923072, 178300784, 9116096}
		

Crossrefs

Programs

  • Mathematica
    q[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; p[x_, n_] = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 4, 10}]; Flatten[%]

Formula

f(n) = 3^n - 2*n - 1;
q(x,n) = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
p(x,n) = ((q[x, n] - (x + 1)^n)/x - f[n] - f[n]*x^(n - 2))/x;
t(n,m) = Coefficients(p(x,n)) with n starting at 4.
Showing 1-4 of 4 results.