cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062029 Group even numbers into (2), (4,6), (8,10,12), (14,16,18,20), ...; a(n) = product of n-th group.

Original entry on oeis.org

2, 24, 960, 80640, 11531520, 2500485120, 763847884800, 312344808652800, 164644289755545600, 108684799028822016000, 87805845811395506995200, 85211145316323008446464000, 97803969545162680178835456000, 131047222390590123375392194560000, 202702319752278628965061257854976000
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(3) = 8*10*12 = 960.
		

Crossrefs

Programs

  • Mathematica
    Table[2^n*Gamma[(2+n+n^2)/2]/Gamma[(2-n+n^2)/2], {n,30}] (* G. C. Greubel, May 05 2022 *)
    With[{nn=30},Times@@@TakeList[Range[2,(nn(nn+1))/2,2],Range[nn/2]]] (* Harvey P. Dale, May 09 2022 *)
  • PARI
    a(n) = { 2^n*((n^2 + n)/2)!/((n^2 - n)/2)! } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [2^n*gamma((2+n+n^2)/2)/gamma((2-n+n^2)/2) for n in (1..30)] # G. C. Greubel, May 05 2022

Formula

a(n) = Product_{k=1..n} (n^2 - n + 2*k) = (n^2 + n)!!/(n^2 - n)!! .
a(n) = 2^n*Gamma((n^2 + n + 2)/2)/Gamma((n^2 - n + 2)/2).
a(n) = 2^n * A057003(n-1).

Extensions

Formula and more terms from Vladeta Jovovic, Jun 05 2001