cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062030 Group even numbers into (2,4), (6,8,10,12), (14,16,18,20,22,24), ...; a(n) = product of n-th group.

Original entry on oeis.org

8, 5760, 42577920, 1300252262400, 111644006842368000, 21695920874860629196800, 8291067715225260172247040000, 5644260808699395278689265516544000, 6360332664265371581768550654463180800000, 11209384544297234954537967755979151481241600000, 29531169256166572959626706182319305835700813824000000
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Comments

a(113) has 997 digits and a(114) has 1007 digits. - Harvey P. Dale, Nov 24 2024

Examples

			a(3) = 14*16*18*20*22*24 = 42577920.
		

Crossrefs

Programs

  • Mathematica
    Table[4^n*Gamma[1+n+n^2]/Gamma[1-n+n^2], {n,30}] (* G. C. Greubel, May 05 2022 *)
    Module[{nn=20,ev,l},ev=2*Range[nn(nn+1)];l=2*Range[nn];Times@@@TakeList[ev,l]] (* Harvey P. Dale, Nov 24 2024 *)
  • PARI
    a(n) = { 2^(2*n)*(n^2+n)!/(n^2-n)! } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [4^n*gamma(1+n+n^2)/gamma(1-n+n^2) for n in (1..30)] # G. C. Greubel, May 05 2022

Formula

a(n) = 4^n * Gamma(1 + n + n^2)/Gamma(1 - n + n^2). - G. C. Greubel, May 06 2022
a(n) ~ 4^n * n^(4*n). - Vaclav Kotesovec, Jun 09 2025

Extensions

More terms from Jason Earls, Jun 10 2001
Typo in a(4) corrected by N. J. A. Sloane, Aug 31 2009 using the b-file.

A062031 Group odd numbers into (1), (3,5,7), (9,11,13,15,17), ...; a(n) = product of n-th group.

Original entry on oeis.org

1, 105, 328185, 5568833025, 304513870485825, 40992233865440682825, 11492457771692770753505625, 5984524775454356180393209490625, 5325142910343897163530366857379506625, 7598549164899334249502031499667984969915625
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(2) = 3*5*7 = 105.
		

Crossrefs

Programs

  • Mathematica
    Table[(Gamma[2*n^2 +1]*Gamma[(n-1)^2 +1])/(2^(2*n-1)*Gamma[n^2 +1]*Gamma[2*(n-1)^2 +1]), {n, 30}] (* G. C. Greubel, May 06 2022 *)
  • PARI
    a(n) = { my(b=2*n^2 - 4*n + 3); prod(k=0, 2*n - 2, b + 2*k) } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [(gamma(2*n^2 +1)*gamma((n-1)^2 +1))/(2^(2*n-1)*gamma(n^2 +1)*gamma(2*(n-1)^2 +1)) for n in (1..30)] # G. C. Greubel, May 06 2022

Formula

a(n) = Product_{k=0..2*n-2} (2*k + 2*n*(n-2) + 3). - Harry J. Smith, Jul 30 2009
a(n) = (Gamma(2*n^2 + 1)*Gamma((n-1)^2 + 1))/(2^(2*n-1)*Gamma(n^2 + 1)*Gamma(2*(n-1)^2 + 1)). - G. C. Greubel, May 06 2022
a(n) ~ exp(-2) * 2^(2*n-1) * n^(4*n-2). - Vaclav Kotesovec, Jun 09 2025

Extensions

More terms from Matthew Conroy, Jun 11 2001

A062032 Group odd numbers into (1), (3,5), (7,9,11), (13,15,17,19), ...; a(n) = product of n-th group.

Original entry on oeis.org

1, 15, 693, 62985, 9454725, 2118331215, 662496582825, 275735605996305, 147364622598587625, 98358760729571316975, 80185770642041047108125, 78405694972326706112753625, 90569612902695107431619494125, 122020670469540010360975931523375, 189638875693941730653122520269900625
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(3) = 7*9*11 = 693.
		

Crossrefs

Programs

  • Mathematica
    len=20; Times@@@FoldPairList[TakeDrop,Range[1,len^2+len-1,2],Range[len]] (* The program uses the FoldPairList and TakeDrop functions from Mathematica version 10 *) (* Harvey P. Dale, Jul 29 2015 *)
    Table[(Gamma[2*Binomial[n+1,2] +1]*Gamma[Binomial[n,2] +1])/(2^n*Gamma[Binomial[n +1,2] +1]*Gamma[2*Binomial[n,2] +1]), {n, 30}] (* G. C. Greubel, May 06 2022 *)
  • PARI
    { for (n=1, 100, b=n^2 - n + 1; write("b062032.txt", n, " ", prod(k=0, n - 1, b + 2*k)) ) } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [(gamma(2*binomial(n+1,2) +1)*gamma(binomial(n,2) +1))/(2^n*gamma(binomial(n+1,2) +1)*gamma(2*binomial(n,2) +1)) for n in (1..30)] # G. C. Greubel, May 06 2022

Formula

a(n) = Product_{k=0..n-1} (2*k + n*(n-1) + 1). - Harry J. Smith, Jul 30 2009
a(n) = (Gamma(2*binomial(n+1, 2) + 1)*Gamma(binomial(n, 2) + 1))/(2^n*Gamma(binomial(n+1, 2) + 1)*Gamma(2*binomial(n, 2) + 1)). - G. C. Greubel, May 06 2022
a(n) ~ n^(2*n). - Vaclav Kotesovec, Jun 09 2025

Extensions

More terms from Jason Earls, Jun 08 2001
Showing 1-3 of 3 results.