cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062030 Group even numbers into (2,4), (6,8,10,12), (14,16,18,20,22,24), ...; a(n) = product of n-th group.

Original entry on oeis.org

8, 5760, 42577920, 1300252262400, 111644006842368000, 21695920874860629196800, 8291067715225260172247040000, 5644260808699395278689265516544000, 6360332664265371581768550654463180800000, 11209384544297234954537967755979151481241600000, 29531169256166572959626706182319305835700813824000000
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Comments

a(113) has 997 digits and a(114) has 1007 digits. - Harvey P. Dale, Nov 24 2024

Examples

			a(3) = 14*16*18*20*22*24 = 42577920.
		

Crossrefs

Programs

  • Mathematica
    Table[4^n*Gamma[1+n+n^2]/Gamma[1-n+n^2], {n,30}] (* G. C. Greubel, May 05 2022 *)
    Module[{nn=20,ev,l},ev=2*Range[nn(nn+1)];l=2*Range[nn];Times@@@TakeList[ev,l]] (* Harvey P. Dale, Nov 24 2024 *)
  • PARI
    a(n) = { 2^(2*n)*(n^2+n)!/(n^2-n)! } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [4^n*gamma(1+n+n^2)/gamma(1-n+n^2) for n in (1..30)] # G. C. Greubel, May 05 2022

Formula

a(n) = 4^n * Gamma(1 + n + n^2)/Gamma(1 - n + n^2). - G. C. Greubel, May 06 2022
a(n) ~ 4^n * n^(4*n). - Vaclav Kotesovec, Jun 09 2025

Extensions

More terms from Jason Earls, Jun 10 2001
Typo in a(4) corrected by N. J. A. Sloane, Aug 31 2009 using the b-file.

A062031 Group odd numbers into (1), (3,5,7), (9,11,13,15,17), ...; a(n) = product of n-th group.

Original entry on oeis.org

1, 105, 328185, 5568833025, 304513870485825, 40992233865440682825, 11492457771692770753505625, 5984524775454356180393209490625, 5325142910343897163530366857379506625, 7598549164899334249502031499667984969915625
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(2) = 3*5*7 = 105.
		

Crossrefs

Programs

  • Mathematica
    Table[(Gamma[2*n^2 +1]*Gamma[(n-1)^2 +1])/(2^(2*n-1)*Gamma[n^2 +1]*Gamma[2*(n-1)^2 +1]), {n, 30}] (* G. C. Greubel, May 06 2022 *)
  • PARI
    a(n) = { my(b=2*n^2 - 4*n + 3); prod(k=0, 2*n - 2, b + 2*k) } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [(gamma(2*n^2 +1)*gamma((n-1)^2 +1))/(2^(2*n-1)*gamma(n^2 +1)*gamma(2*(n-1)^2 +1)) for n in (1..30)] # G. C. Greubel, May 06 2022

Formula

a(n) = Product_{k=0..2*n-2} (2*k + 2*n*(n-2) + 3). - Harry J. Smith, Jul 30 2009
a(n) = (Gamma(2*n^2 + 1)*Gamma((n-1)^2 + 1))/(2^(2*n-1)*Gamma(n^2 + 1)*Gamma(2*(n-1)^2 + 1)). - G. C. Greubel, May 06 2022
a(n) ~ exp(-2) * 2^(2*n-1) * n^(4*n-2). - Vaclav Kotesovec, Jun 09 2025

Extensions

More terms from Matthew Conroy, Jun 11 2001

A062029 Group even numbers into (2), (4,6), (8,10,12), (14,16,18,20), ...; a(n) = product of n-th group.

Original entry on oeis.org

2, 24, 960, 80640, 11531520, 2500485120, 763847884800, 312344808652800, 164644289755545600, 108684799028822016000, 87805845811395506995200, 85211145316323008446464000, 97803969545162680178835456000, 131047222390590123375392194560000, 202702319752278628965061257854976000
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(3) = 8*10*12 = 960.
		

Crossrefs

Programs

  • Mathematica
    Table[2^n*Gamma[(2+n+n^2)/2]/Gamma[(2-n+n^2)/2], {n,30}] (* G. C. Greubel, May 05 2022 *)
    With[{nn=30},Times@@@TakeList[Range[2,(nn(nn+1))/2,2],Range[nn/2]]] (* Harvey P. Dale, May 09 2022 *)
  • PARI
    a(n) = { 2^n*((n^2 + n)/2)!/((n^2 - n)/2)! } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [2^n*gamma((2+n+n^2)/2)/gamma((2-n+n^2)/2) for n in (1..30)] # G. C. Greubel, May 05 2022

Formula

a(n) = Product_{k=1..n} (n^2 - n + 2*k) = (n^2 + n)!!/(n^2 - n)!! .
a(n) = 2^n*Gamma((n^2 + n + 2)/2)/Gamma((n^2 - n + 2)/2).
a(n) = 2^n * A057003(n-1).

Extensions

Formula and more terms from Vladeta Jovovic, Jun 05 2001

A062079 Group the odd numbers as (1), (3,5), (7,9,11), (13,15,17,19), (21,23,25,27,29), ... then a(n) = LCM of the n-th group.

Original entry on oeis.org

1, 15, 693, 62985, 3151575, 706110405, 44166438855, 30637289555145, 3274769391079725, 312250034062131165, 593968671422526274875, 5531265959247033940935, 95840860214492177176316925
Offset: 1

Views

Author

Amarnath Murthy, Jun 15 2001

Keywords

Examples

			a(3) = lcm(7,9,11) = 693.
		

Crossrefs

Programs

  • Mathematica
    Table[LCM[Gamma[2*Binomial[n+1, 2] + 1]*Gamma[Binomial[n, 2] + 1]/(2^n*Gamma[Binomial[n+1, 2] + 1]*Gamma[2*Binomial[n, 2] + 1])], {n,20}] (* G. C. Greubel, May 13 2022 *)
  • PARI
    a(n) = local(r);r=1;forstep(k=n^2-n+1,n^2+n-1,2,r=lcm(r,k));r \\ Franklin T. Adams-Watters, Jul 03 2009
    
  • PARI
    { for (n=1, 100, a=b=n^2 - n + 1; for (k=1, n - 1, a=lcm(a, b + 2*k)); write("b062079.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 31 2009
    
  • SageMath
    [lcm(gamma(2*binomial(n+1, 2) + 1)*gamma(binomial(n, 2) + 1)/(2^n*gamma(binomial(n+1, 2) + 1)*gamma(2*binomial(n, 2) + 1))) for n in (1..20)] # G. C. Greubel, May 13 2022

Formula

a(n) = lcm(Gamma(2*binomial(n+1, 2) + 1)*Gamma(binomial(n, 2) + 1)/(2^n*Gamma(binomial(n+1, 2) + 1)*Gamma(2*binomial(n, 2) + 1))). - G. C. Greubel, May 13 2022

Extensions

Corrected and extended by Franklin T. Adams-Watters, Jul 03 2009
Showing 1-4 of 4 results.