cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062031 Group odd numbers into (1), (3,5,7), (9,11,13,15,17), ...; a(n) = product of n-th group.

Original entry on oeis.org

1, 105, 328185, 5568833025, 304513870485825, 40992233865440682825, 11492457771692770753505625, 5984524775454356180393209490625, 5325142910343897163530366857379506625, 7598549164899334249502031499667984969915625
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(2) = 3*5*7 = 105.
		

Crossrefs

Programs

  • Mathematica
    Table[(Gamma[2*n^2 +1]*Gamma[(n-1)^2 +1])/(2^(2*n-1)*Gamma[n^2 +1]*Gamma[2*(n-1)^2 +1]), {n, 30}] (* G. C. Greubel, May 06 2022 *)
  • PARI
    a(n) = { my(b=2*n^2 - 4*n + 3); prod(k=0, 2*n - 2, b + 2*k) } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [(gamma(2*n^2 +1)*gamma((n-1)^2 +1))/(2^(2*n-1)*gamma(n^2 +1)*gamma(2*(n-1)^2 +1)) for n in (1..30)] # G. C. Greubel, May 06 2022

Formula

a(n) = Product_{k=0..2*n-2} (2*k + 2*n*(n-2) + 3). - Harry J. Smith, Jul 30 2009
a(n) = (Gamma(2*n^2 + 1)*Gamma((n-1)^2 + 1))/(2^(2*n-1)*Gamma(n^2 + 1)*Gamma(2*(n-1)^2 + 1)). - G. C. Greubel, May 06 2022
a(n) ~ exp(-2) * 2^(2*n-1) * n^(4*n-2). - Vaclav Kotesovec, Jun 09 2025

Extensions

More terms from Matthew Conroy, Jun 11 2001

A062032 Group odd numbers into (1), (3,5), (7,9,11), (13,15,17,19), ...; a(n) = product of n-th group.

Original entry on oeis.org

1, 15, 693, 62985, 9454725, 2118331215, 662496582825, 275735605996305, 147364622598587625, 98358760729571316975, 80185770642041047108125, 78405694972326706112753625, 90569612902695107431619494125, 122020670469540010360975931523375, 189638875693941730653122520269900625
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(3) = 7*9*11 = 693.
		

Crossrefs

Programs

  • Mathematica
    len=20; Times@@@FoldPairList[TakeDrop,Range[1,len^2+len-1,2],Range[len]] (* The program uses the FoldPairList and TakeDrop functions from Mathematica version 10 *) (* Harvey P. Dale, Jul 29 2015 *)
    Table[(Gamma[2*Binomial[n+1,2] +1]*Gamma[Binomial[n,2] +1])/(2^n*Gamma[Binomial[n +1,2] +1]*Gamma[2*Binomial[n,2] +1]), {n, 30}] (* G. C. Greubel, May 06 2022 *)
  • PARI
    { for (n=1, 100, b=n^2 - n + 1; write("b062032.txt", n, " ", prod(k=0, n - 1, b + 2*k)) ) } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [(gamma(2*binomial(n+1,2) +1)*gamma(binomial(n,2) +1))/(2^n*gamma(binomial(n+1,2) +1)*gamma(2*binomial(n,2) +1)) for n in (1..30)] # G. C. Greubel, May 06 2022

Formula

a(n) = Product_{k=0..n-1} (2*k + n*(n-1) + 1). - Harry J. Smith, Jul 30 2009
a(n) = (Gamma(2*binomial(n+1, 2) + 1)*Gamma(binomial(n, 2) + 1))/(2^n*Gamma(binomial(n+1, 2) + 1)*Gamma(2*binomial(n, 2) + 1)). - G. C. Greubel, May 06 2022
a(n) ~ n^(2*n). - Vaclav Kotesovec, Jun 09 2025

Extensions

More terms from Jason Earls, Jun 08 2001

A062029 Group even numbers into (2), (4,6), (8,10,12), (14,16,18,20), ...; a(n) = product of n-th group.

Original entry on oeis.org

2, 24, 960, 80640, 11531520, 2500485120, 763847884800, 312344808652800, 164644289755545600, 108684799028822016000, 87805845811395506995200, 85211145316323008446464000, 97803969545162680178835456000, 131047222390590123375392194560000, 202702319752278628965061257854976000
Offset: 1

Views

Author

Amarnath Murthy, Jun 02 2001

Keywords

Examples

			a(3) = 8*10*12 = 960.
		

Crossrefs

Programs

  • Mathematica
    Table[2^n*Gamma[(2+n+n^2)/2]/Gamma[(2-n+n^2)/2], {n,30}] (* G. C. Greubel, May 05 2022 *)
    With[{nn=30},Times@@@TakeList[Range[2,(nn(nn+1))/2,2],Range[nn/2]]] (* Harvey P. Dale, May 09 2022 *)
  • PARI
    a(n) = { 2^n*((n^2 + n)/2)!/((n^2 - n)/2)! } \\ Harry J. Smith, Jul 30 2009
    
  • SageMath
    [2^n*gamma((2+n+n^2)/2)/gamma((2-n+n^2)/2) for n in (1..30)] # G. C. Greubel, May 05 2022

Formula

a(n) = Product_{k=1..n} (n^2 - n + 2*k) = (n^2 + n)!!/(n^2 - n)!! .
a(n) = 2^n*Gamma((n^2 + n + 2)/2)/Gamma((n^2 - n + 2)/2).
a(n) = 2^n * A057003(n-1).

Extensions

Formula and more terms from Vladeta Jovovic, Jun 05 2001

A082735 Product of n-th group of terms in A074147.

Original entry on oeis.org

1, 8, 105, 5760, 328185, 42577920, 5568833025, 1300252262400, 304513870485825, 111644006842368000, 40992233865440682825, 21695920874860629196800, 11492457771692770753505625, 8291067715225260172247040000
Offset: 1

Views

Author

Amarnath Murthy, Apr 14 2003

Keywords

Crossrefs

Programs

Formula

a(1) = 1, a(2n) = product of next 2n even numbers. a(2n+1) = product of next 2n+1 odd numbers.
a(n)=A006882[A074148(n)]/A006882[A074148(n-2)]. a(2n-1)=A062031(n). a(2n)=A062030(n). # R. J. Mathar, Jul 17 2007

Extensions

Corrected and extended by R. J. Mathar, Jul 17 2007
Showing 1-4 of 4 results.