cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062092 a(n) = 2*a(n-1) - (-1)^n for n > 0, a(0)=2.

Original entry on oeis.org

2, 5, 9, 19, 37, 75, 149, 299, 597, 1195, 2389, 4779, 9557, 19115, 38229, 76459, 152917, 305835, 611669, 1223339, 2446677, 4893355, 9786709, 19573419, 39146837, 78293675, 156587349, 313174699, 626349397, 1252698795, 2505397589
Offset: 0

Views

Author

Amarnath Murthy, Jun 16 2001

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i] = 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n>=1, a(n-1) = charpoly(A,3). - Milan Janjic, Jan 24 2010

References

  • T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.

Crossrefs

Cf. A171160 (first differences).

Programs

Formula

a(n) = a(n-1) + 2*a(n-2).
a(n) = (7*2^n - (-1)^n)/3.
a(n) = 2^(n+1) + A001045(n).
A002487(a(n)) = A000032(n+1).
G.f.: (2+3*x)/(1-x-2*x^2).
E.g.f.: (7*exp(2*x) - exp(-x))/3.
a(n) = Sum_{j=0..2} A001045(n-j) (sum of 3 consecutive elements of the Jacobsthal sequence). - Alexander Adamchuk, May 16 2006
From Paul Curtz, Jun 03 2022: (Start)
a(n) = A001045(n+3) - A078008(n).
a(n) = A078008(n+3) - A001045(n).
a(n) = A005009(n-1) - a(n-1) for n >= 1.
a(n) = a(n-2) + A005009(n-2) for n >= 2.
a(n) = A154879(n-2) + 3*A201630(n-2) for n >= 2. (End)

Extensions

More terms from Jason Earls, Jun 18 2001
Additional comments from Michael Somos, Jun 24 2002